* Automatically select FRI reduction arities This way when a proof's degree changes, we won't need to manually update the `FriConfig`s of any recursive proofs on top of it. For now I've added two methods of selecting arities. The first, `ConstantArityBits`, just applies a fixed reduciton arity until the degree has shrunk below a certain threshold. The second, `MinSize`, searches for the sequence of arities that minimizes proof size. Note that this optimization is approximate -- e.g. it doesn't account for the effect of compression, and doesn't count some minor contributions to proof size, like the Merkle roots from the commit phase. It also assumes we're not using Merkle caps in serialized proofs, and that we're inferring one of the evaluations, even though we haven't made those changes yet. I think we should generally use `ConstantArityBits` for proofs that we will recurse on, since using a single arity tends to be more recursion-friendly. We could use `MinSize` for generating final bridge proofs, since we won't do further recursion on top of those. * Fix tests * Feedback
plonky2
plonky2 is an implementation of recursive arguments based on Plonk and FRI. It uses FRI to check systems of polynomial constraints, similar to the DEEP-ALI method described in the DEEP-FRI paper. It is the successor of plonky, which was based on Plonk and Halo.
plonky2 is largely focused on recursion performance. We use custom gates to mitigate the bottlenecks of FRI verification, such as hashing and interpolation. We also encode witness data in a ~64 bit field, so field operations take just a few cycles. To achieve 128-bit security, we repeat certain checks, and run certain parts of the argument in an extension field.
Running
To see recursion performance, one can run this test, which generates a chain of three recursion proofs:
RUST_LOG=debug RUSTFLAGS=-Ctarget-cpu=native cargo test --release test_recursive_recursive_verifier -- --ignored
Disclaimer
This code has not been thoroughly reviewed or tested, and should not be used in any production systems.