mirror of
https://github.com/logos-storage/plonky2.git
synced 2026-01-08 00:33:06 +00:00
464 lines
17 KiB
Rust
464 lines
17 KiB
Rust
use std::marker::PhantomData;
|
|
use std::ops::Range;
|
|
|
|
use crate::field::extension_field::algebra::PolynomialCoeffsAlgebra;
|
|
use crate::field::extension_field::target::ExtensionTarget;
|
|
use crate::field::extension_field::{Extendable, FieldExtension};
|
|
use crate::field::field_types::{Field, RichField};
|
|
use crate::field::interpolation::interpolant;
|
|
use crate::gadgets::interpolation::InterpolationGate;
|
|
use crate::gadgets::polynomial::PolynomialCoeffsExtAlgebraTarget;
|
|
use crate::gates::gate::Gate;
|
|
use crate::iop::generator::{GeneratedValues, SimpleGenerator, WitnessGenerator};
|
|
use crate::iop::target::Target;
|
|
use crate::iop::wire::Wire;
|
|
use crate::iop::witness::{PartitionWitness, Witness};
|
|
use crate::plonk::circuit_builder::CircuitBuilder;
|
|
use crate::plonk::vars::{EvaluationTargets, EvaluationVars, EvaluationVarsBase};
|
|
use crate::polynomial::PolynomialCoeffs;
|
|
|
|
/// Interpolation gate with constraints of degree 2.
|
|
/// `eval_unfiltered_recursively` uses more gates than `HighDegreeInterpolationGate`.
|
|
#[derive(Copy, Clone, Debug)]
|
|
pub(crate) struct LowDegreeInterpolationGate<F: RichField + Extendable<D>, const D: usize> {
|
|
pub subgroup_bits: usize,
|
|
_phantom: PhantomData<F>,
|
|
}
|
|
|
|
impl<F: RichField + Extendable<D>, const D: usize> InterpolationGate<F, D>
|
|
for LowDegreeInterpolationGate<F, D>
|
|
{
|
|
fn new(subgroup_bits: usize) -> Self {
|
|
Self {
|
|
subgroup_bits,
|
|
_phantom: PhantomData,
|
|
}
|
|
}
|
|
|
|
fn num_points(&self) -> usize {
|
|
1 << self.subgroup_bits
|
|
}
|
|
}
|
|
|
|
impl<F: RichField + Extendable<D>, const D: usize> LowDegreeInterpolationGate<F, D> {
|
|
/// `powers_shift(i)` is the wire index of `wire_shift^i`.
|
|
pub fn powers_shift(&self, i: usize) -> usize {
|
|
debug_assert!(0 < i && i < self.num_points());
|
|
if i == 1 {
|
|
return self.wire_shift();
|
|
}
|
|
self.end_coeffs() + i - 2
|
|
}
|
|
|
|
/// `powers_evalutation_point(i)` is the wire index of `evalutation_point^i`.
|
|
pub fn powers_evaluation_point(&self, i: usize) -> Range<usize> {
|
|
debug_assert!(0 < i && i < self.num_points());
|
|
if i == 1 {
|
|
return self.wires_evaluation_point();
|
|
}
|
|
let start = self.end_coeffs() + self.num_points() - 2 + (i - 2) * D;
|
|
start..start + D
|
|
}
|
|
|
|
/// End of wire indices, exclusive.
|
|
fn end(&self) -> usize {
|
|
self.powers_evaluation_point(self.num_points() - 1).end
|
|
}
|
|
|
|
/// The domain of the points we're interpolating.
|
|
fn coset(&self, shift: F) -> impl Iterator<Item = F> {
|
|
let g = F::primitive_root_of_unity(self.subgroup_bits);
|
|
let size = 1 << self.subgroup_bits;
|
|
// Speed matters here, so we avoid `cyclic_subgroup_coset_known_order` which allocates.
|
|
g.powers().take(size).map(move |x| x * shift)
|
|
}
|
|
}
|
|
|
|
impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for LowDegreeInterpolationGate<F, D> {
|
|
fn id(&self) -> String {
|
|
format!("{:?}<D={}>", self, D)
|
|
}
|
|
|
|
fn eval_unfiltered(&self, vars: EvaluationVars<F, D>) -> Vec<F::Extension> {
|
|
let mut constraints = Vec::with_capacity(self.num_constraints());
|
|
|
|
let coeffs = (0..self.num_points())
|
|
.map(|i| vars.get_local_ext_algebra(self.wires_coeff(i)))
|
|
.collect::<Vec<_>>();
|
|
|
|
let mut powers_shift = (1..self.num_points())
|
|
.map(|i| vars.local_wires[self.powers_shift(i)])
|
|
.collect::<Vec<_>>();
|
|
let shift = powers_shift[0];
|
|
for i in 1..self.num_points() - 1 {
|
|
constraints.push(powers_shift[i - 1] * shift - powers_shift[i]);
|
|
}
|
|
powers_shift.insert(0, F::Extension::ONE);
|
|
// `altered_coeffs[i] = c_i * shift^i`, where `c_i` is the original coefficient.
|
|
// Then, `altered(w^i) = original(shift*w^i)`.
|
|
let altered_coeffs = coeffs
|
|
.iter()
|
|
.zip(powers_shift)
|
|
.map(|(&c, p)| c.scalar_mul(p))
|
|
.collect::<Vec<_>>();
|
|
let interpolant = PolynomialCoeffsAlgebra::new(coeffs);
|
|
let altered_interpolant = PolynomialCoeffsAlgebra::new(altered_coeffs);
|
|
|
|
for (i, point) in F::Extension::two_adic_subgroup(self.subgroup_bits)
|
|
.into_iter()
|
|
.enumerate()
|
|
{
|
|
let value = vars.get_local_ext_algebra(self.wires_value(i));
|
|
let computed_value = altered_interpolant.eval_base(point);
|
|
constraints.extend(&(value - computed_value).to_basefield_array());
|
|
}
|
|
|
|
let evaluation_point_powers = (1..self.num_points())
|
|
.map(|i| vars.get_local_ext_algebra(self.powers_evaluation_point(i)))
|
|
.collect::<Vec<_>>();
|
|
let evaluation_point = evaluation_point_powers[0];
|
|
for i in 1..self.num_points() - 1 {
|
|
constraints.extend(
|
|
(evaluation_point_powers[i - 1] * evaluation_point - evaluation_point_powers[i])
|
|
.to_basefield_array(),
|
|
);
|
|
}
|
|
let evaluation_value = vars.get_local_ext_algebra(self.wires_evaluation_value());
|
|
let computed_evaluation_value = interpolant.eval_with_powers(&evaluation_point_powers);
|
|
constraints.extend(&(evaluation_value - computed_evaluation_value).to_basefield_array());
|
|
|
|
constraints
|
|
}
|
|
|
|
fn eval_unfiltered_base(&self, vars: EvaluationVarsBase<F>) -> Vec<F> {
|
|
let mut constraints = Vec::with_capacity(self.num_constraints());
|
|
|
|
let coeffs = (0..self.num_points())
|
|
.map(|i| vars.get_local_ext(self.wires_coeff(i)))
|
|
.collect::<Vec<_>>();
|
|
|
|
let mut powers_shift = (1..self.num_points())
|
|
.map(|i| vars.local_wires[self.powers_shift(i)])
|
|
.collect::<Vec<_>>();
|
|
let shift = powers_shift[0];
|
|
for i in 1..self.num_points() - 1 {
|
|
constraints.push(powers_shift[i - 1] * shift - powers_shift[i]);
|
|
}
|
|
powers_shift.insert(0, F::ONE);
|
|
// `altered_coeffs[i] = c_i * shift^i`, where `c_i` is the original coefficient.
|
|
// Then, `altered(w^i) = original(shift*w^i)`.
|
|
let altered_coeffs = coeffs
|
|
.iter()
|
|
.zip(powers_shift)
|
|
.map(|(&c, p)| c.scalar_mul(p))
|
|
.collect::<Vec<_>>();
|
|
let interpolant = PolynomialCoeffs::new(coeffs);
|
|
let altered_interpolant = PolynomialCoeffs::new(altered_coeffs);
|
|
|
|
for (i, point) in F::two_adic_subgroup(self.subgroup_bits)
|
|
.into_iter()
|
|
.enumerate()
|
|
{
|
|
let value = vars.get_local_ext(self.wires_value(i));
|
|
let computed_value = altered_interpolant.eval_base(point);
|
|
constraints.extend(&(value - computed_value).to_basefield_array());
|
|
}
|
|
|
|
let evaluation_point_powers = (1..self.num_points())
|
|
.map(|i| vars.get_local_ext(self.powers_evaluation_point(i)))
|
|
.collect::<Vec<_>>();
|
|
let evaluation_point = evaluation_point_powers[0];
|
|
for i in 1..self.num_points() - 1 {
|
|
constraints.extend(
|
|
(evaluation_point_powers[i - 1] * evaluation_point - evaluation_point_powers[i])
|
|
.to_basefield_array(),
|
|
);
|
|
}
|
|
let evaluation_value = vars.get_local_ext(self.wires_evaluation_value());
|
|
let computed_evaluation_value = interpolant.eval_with_powers(&evaluation_point_powers);
|
|
constraints.extend(&(evaluation_value - computed_evaluation_value).to_basefield_array());
|
|
|
|
constraints
|
|
}
|
|
|
|
fn eval_unfiltered_recursively(
|
|
&self,
|
|
builder: &mut CircuitBuilder<F, D>,
|
|
vars: EvaluationTargets<D>,
|
|
) -> Vec<ExtensionTarget<D>> {
|
|
let mut constraints = Vec::with_capacity(self.num_constraints());
|
|
|
|
let coeffs = (0..self.num_points())
|
|
.map(|i| vars.get_local_ext_algebra(self.wires_coeff(i)))
|
|
.collect::<Vec<_>>();
|
|
|
|
let mut powers_shift = (1..self.num_points())
|
|
.map(|i| vars.local_wires[self.powers_shift(i)])
|
|
.collect::<Vec<_>>();
|
|
let shift = powers_shift[0];
|
|
for i in 1..self.num_points() - 1 {
|
|
constraints.push(builder.mul_sub_extension(
|
|
powers_shift[i - 1],
|
|
shift,
|
|
powers_shift[i],
|
|
));
|
|
}
|
|
powers_shift.insert(0, builder.one_extension());
|
|
// `altered_coeffs[i] = c_i * shift^i`, where `c_i` is the original coefficient.
|
|
// Then, `altered(w^i) = original(shift*w^i)`.
|
|
let altered_coeffs = coeffs
|
|
.iter()
|
|
.zip(powers_shift)
|
|
.map(|(&c, p)| builder.scalar_mul_ext_algebra(p, c))
|
|
.collect::<Vec<_>>();
|
|
let interpolant = PolynomialCoeffsExtAlgebraTarget(coeffs);
|
|
let altered_interpolant = PolynomialCoeffsExtAlgebraTarget(altered_coeffs);
|
|
|
|
for (i, point) in F::Extension::two_adic_subgroup(self.subgroup_bits)
|
|
.into_iter()
|
|
.enumerate()
|
|
{
|
|
let value = vars.get_local_ext_algebra(self.wires_value(i));
|
|
let point = builder.constant_extension(point);
|
|
let computed_value = altered_interpolant.eval_scalar(builder, point);
|
|
constraints.extend(
|
|
&builder
|
|
.sub_ext_algebra(value, computed_value)
|
|
.to_ext_target_array(),
|
|
);
|
|
}
|
|
|
|
let evaluation_point_powers = (1..self.num_points())
|
|
.map(|i| vars.get_local_ext_algebra(self.powers_evaluation_point(i)))
|
|
.collect::<Vec<_>>();
|
|
let evaluation_point = evaluation_point_powers[0];
|
|
for i in 1..self.num_points() - 1 {
|
|
let neg_one_ext = builder.neg_one_extension();
|
|
let neg_new_power =
|
|
builder.scalar_mul_ext_algebra(neg_one_ext, evaluation_point_powers[i]);
|
|
let constraint = builder.mul_add_ext_algebra(
|
|
evaluation_point,
|
|
evaluation_point_powers[i - 1],
|
|
neg_new_power,
|
|
);
|
|
constraints.extend(constraint.to_ext_target_array());
|
|
}
|
|
let evaluation_value = vars.get_local_ext_algebra(self.wires_evaluation_value());
|
|
let computed_evaluation_value =
|
|
interpolant.eval_with_powers(builder, &evaluation_point_powers);
|
|
// let evaluation_point = vars.get_local_ext_algebra(self.wires_evaluation_point());
|
|
// let evaluation_value = vars.get_local_ext_algebra(self.wires_evaluation_value());
|
|
// let computed_evaluation_value = interpolant.eval(builder, evaluation_point);
|
|
constraints.extend(
|
|
&builder
|
|
.sub_ext_algebra(evaluation_value, computed_evaluation_value)
|
|
.to_ext_target_array(),
|
|
);
|
|
|
|
constraints
|
|
}
|
|
|
|
fn generators(
|
|
&self,
|
|
gate_index: usize,
|
|
_local_constants: &[F],
|
|
) -> Vec<Box<dyn WitnessGenerator<F>>> {
|
|
let gen = InterpolationGenerator::<F, D> {
|
|
gate_index,
|
|
gate: *self,
|
|
_phantom: PhantomData,
|
|
};
|
|
vec![Box::new(gen.adapter())]
|
|
}
|
|
|
|
fn num_wires(&self) -> usize {
|
|
self.end()
|
|
}
|
|
|
|
fn num_constants(&self) -> usize {
|
|
0
|
|
}
|
|
|
|
fn degree(&self) -> usize {
|
|
2
|
|
}
|
|
|
|
fn num_constraints(&self) -> usize {
|
|
// `num_points * D` constraints to check for consistency between the coefficients and the
|
|
// point-value pairs, plus `D` constraints for the evaluation value, plus `(D+1)*(num_points-2)`
|
|
// to check power constraints for evaluation point and shift.
|
|
self.num_points() * D + D + (D + 1) * (self.num_points() - 2)
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct InterpolationGenerator<F: RichField + Extendable<D>, const D: usize> {
|
|
gate_index: usize,
|
|
gate: LowDegreeInterpolationGate<F, D>,
|
|
_phantom: PhantomData<F>,
|
|
}
|
|
|
|
impl<F: RichField + Extendable<D>, const D: usize> SimpleGenerator<F>
|
|
for InterpolationGenerator<F, D>
|
|
{
|
|
fn dependencies(&self) -> Vec<Target> {
|
|
let local_target = |input| {
|
|
Target::Wire(Wire {
|
|
gate: self.gate_index,
|
|
input,
|
|
})
|
|
};
|
|
|
|
let local_targets = |inputs: Range<usize>| inputs.map(local_target);
|
|
|
|
let num_points = self.gate.num_points();
|
|
let mut deps = Vec::with_capacity(1 + D + num_points * D);
|
|
|
|
deps.push(local_target(self.gate.wire_shift()));
|
|
deps.extend(local_targets(self.gate.wires_evaluation_point()));
|
|
for i in 0..num_points {
|
|
deps.extend(local_targets(self.gate.wires_value(i)));
|
|
}
|
|
deps
|
|
}
|
|
|
|
fn run_once(&self, witness: &PartitionWitness<F>, out_buffer: &mut GeneratedValues<F>) {
|
|
let local_wire = |input| Wire {
|
|
gate: self.gate_index,
|
|
input,
|
|
};
|
|
|
|
let get_local_wire = |input| witness.get_wire(local_wire(input));
|
|
|
|
let get_local_ext = |wire_range: Range<usize>| {
|
|
debug_assert_eq!(wire_range.len(), D);
|
|
let values = wire_range.map(get_local_wire).collect::<Vec<_>>();
|
|
let arr = values.try_into().unwrap();
|
|
F::Extension::from_basefield_array(arr)
|
|
};
|
|
|
|
let wire_shift = get_local_wire(self.gate.wire_shift());
|
|
|
|
for (i, power) in wire_shift
|
|
.powers()
|
|
.take(self.gate.num_points())
|
|
.enumerate()
|
|
.skip(2)
|
|
{
|
|
out_buffer.set_wire(local_wire(self.gate.powers_shift(i)), power);
|
|
}
|
|
|
|
// Compute the interpolant.
|
|
let points = self.gate.coset(wire_shift);
|
|
let points = points
|
|
.into_iter()
|
|
.enumerate()
|
|
.map(|(i, point)| (point.into(), get_local_ext(self.gate.wires_value(i))))
|
|
.collect::<Vec<_>>();
|
|
let interpolant = interpolant(&points);
|
|
|
|
for (i, &coeff) in interpolant.coeffs.iter().enumerate() {
|
|
let wires = self.gate.wires_coeff(i).map(local_wire);
|
|
out_buffer.set_ext_wires(wires, coeff);
|
|
}
|
|
|
|
let evaluation_point = get_local_ext(self.gate.wires_evaluation_point());
|
|
for (i, power) in evaluation_point
|
|
.powers()
|
|
.take(self.gate.num_points())
|
|
.enumerate()
|
|
.skip(2)
|
|
{
|
|
out_buffer.set_extension_target(
|
|
ExtensionTarget::from_range(self.gate_index, self.gate.powers_evaluation_point(i)),
|
|
power,
|
|
);
|
|
}
|
|
let evaluation_value = interpolant.eval(evaluation_point);
|
|
let evaluation_value_wires = self.gate.wires_evaluation_value().map(local_wire);
|
|
out_buffer.set_ext_wires(evaluation_value_wires, evaluation_value);
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use anyhow::Result;
|
|
|
|
use crate::field::extension_field::quadratic::QuadraticExtension;
|
|
use crate::field::field_types::Field;
|
|
use crate::field::goldilocks_field::GoldilocksField;
|
|
use crate::gadgets::interpolation::InterpolationGate;
|
|
use crate::gates::gate::Gate;
|
|
use crate::gates::gate_testing::{test_eval_fns, test_low_degree};
|
|
use crate::gates::low_degree_interpolation::LowDegreeInterpolationGate;
|
|
use crate::hash::hash_types::HashOut;
|
|
use crate::plonk::config::{GenericConfig, PoseidonGoldilocksConfig};
|
|
use crate::plonk::vars::EvaluationVars;
|
|
use crate::polynomial::PolynomialCoeffs;
|
|
|
|
#[test]
|
|
fn low_degree() {
|
|
test_low_degree::<GoldilocksField, _, 4>(LowDegreeInterpolationGate::new(4));
|
|
}
|
|
|
|
#[test]
|
|
fn eval_fns() -> Result<()> {
|
|
const D: usize = 2;
|
|
type C = PoseidonGoldilocksConfig;
|
|
type F = <C as GenericConfig<D>>::F;
|
|
test_eval_fns::<F, C, _, D>(LowDegreeInterpolationGate::new(4))
|
|
}
|
|
|
|
#[test]
|
|
fn test_gate_constraint() {
|
|
type F = GoldilocksField;
|
|
type FF = QuadraticExtension<GoldilocksField>;
|
|
const D: usize = 2;
|
|
|
|
/// Returns the local wires for an interpolation gate for given coeffs, points and eval point.
|
|
fn get_wires(
|
|
gate: &LowDegreeInterpolationGate<F, D>,
|
|
shift: F,
|
|
coeffs: PolynomialCoeffs<FF>,
|
|
eval_point: FF,
|
|
) -> Vec<FF> {
|
|
let points = gate.coset(shift);
|
|
let mut v = vec![shift];
|
|
for x in points {
|
|
v.extend(coeffs.eval(x.into()).0);
|
|
}
|
|
v.extend(eval_point.0);
|
|
v.extend(coeffs.eval(eval_point).0);
|
|
for i in 0..coeffs.len() {
|
|
v.extend(coeffs.coeffs[i].0);
|
|
}
|
|
v.extend(shift.powers().skip(2).take(gate.num_points() - 2));
|
|
v.extend(
|
|
eval_point
|
|
.powers()
|
|
.skip(2)
|
|
.take(gate.num_points() - 2)
|
|
.flat_map(|ff| ff.0),
|
|
);
|
|
v.iter().map(|&x| x.into()).collect::<Vec<_>>()
|
|
}
|
|
|
|
// Get a working row for LowDegreeInterpolationGate.
|
|
let subgroup_bits = 4;
|
|
let shift = F::rand();
|
|
let coeffs = PolynomialCoeffs::new(FF::rand_vec(1 << subgroup_bits));
|
|
let eval_point = FF::rand();
|
|
let gate = LowDegreeInterpolationGate::<F, D>::new(subgroup_bits);
|
|
let vars = EvaluationVars {
|
|
local_constants: &[],
|
|
local_wires: &get_wires(&gate, shift, coeffs, eval_point),
|
|
public_inputs_hash: &HashOut::rand(),
|
|
};
|
|
|
|
assert!(
|
|
gate.eval_unfiltered(vars).iter().all(|x| x.is_zero()),
|
|
"Gate constraints are not satisfied."
|
|
);
|
|
}
|
|
}
|