mirror of
https://github.com/logos-storage/plonky2.git
synced 2026-01-10 01:33:07 +00:00
241 lines
9.1 KiB
Rust
241 lines
9.1 KiB
Rust
//! Support for the EVM MUL instruction.
|
|
//!
|
|
//! This crate verifies an EVM MUL instruction, which takes two
|
|
//! 256-bit inputs A and B, and produces a 256-bit output C satisfying
|
|
//!
|
|
//! C = A*B (mod 2^256),
|
|
//!
|
|
//! i.e. C is the lower half of the usual long multiplication
|
|
//! A*B. Inputs A and B, and output C, are given as arrays of 16-bit
|
|
//! limbs. For example, if the limbs of A are a[0]...a[15], then
|
|
//!
|
|
//! A = \sum_{i=0}^15 a[i] β^i,
|
|
//!
|
|
//! where β = 2^16 = 2^LIMB_BITS. To verify that A, B and C satisfy
|
|
//! the equation we proceed as follows. Define
|
|
//!
|
|
//! a(x) = \sum_{i=0}^15 a[i] x^i
|
|
//!
|
|
//! (so A = a(β)) and similarly for b(x) and c(x). Then A*B = C (mod
|
|
//! 2^256) if and only if there exists q such that the polynomial
|
|
//!
|
|
//! a(x) * b(x) - c(x) - x^16 * q(x)
|
|
//!
|
|
//! is zero when evaluated at x = β, i.e. it is divisible by (x - β);
|
|
//! equivalently, there exists a polynomial s (representing the
|
|
//! carries from the long multiplication) such that
|
|
//!
|
|
//! a(x) * b(x) - c(x) - x^16 * q(x) - (x - β) * s(x) == 0
|
|
//!
|
|
//! As we only need the lower half of the product, we can omit q(x)
|
|
//! since it is multiplied by the modulus β^16 = 2^256. Thus we only
|
|
//! need to verify
|
|
//!
|
|
//! a(x) * b(x) - c(x) - (x - β) * s(x) == 0
|
|
//!
|
|
//! In the code below, this "constraint polynomial" is constructed in
|
|
//! the variable `constr_poly`. It must be identically zero for the
|
|
//! multiplication operation to be verified, or, equivalently, each of
|
|
//! its coefficients must be zero. The variable names of the
|
|
//! constituent polynomials are (writing N for N_LIMBS=16):
|
|
//!
|
|
//! a(x) = \sum_{i=0}^{N-1} input0[i] * x^i
|
|
//! b(x) = \sum_{i=0}^{N-1} input1[i] * x^i
|
|
//! c(x) = \sum_{i=0}^{N-1} output[i] * x^i
|
|
//! s(x) = \sum_i^{2N-3} aux[i] * x^i
|
|
//!
|
|
//! Because A, B and C are 256-bit numbers, the degrees of a, b and c
|
|
//! are (at most) 15. Thus deg(a*b) <= 30 and deg(s) <= 29; however,
|
|
//! as we're only verifying the lower half of A*B, we only need to
|
|
//! know s(x) up to degree 14 (so that (x - β)*s(x) has degree 15). On
|
|
//! the other hand, the coefficients of s(x) can be as large as
|
|
//! 16*(β-2) or 20 bits.
|
|
//!
|
|
//! Note that, unlike for the general modular multiplication (see the
|
|
//! file `modular.rs`), we don't need to check that output is reduced,
|
|
//! since any value of output is less than β^16 and is hence reduced.
|
|
|
|
use plonky2::field::extension::Extendable;
|
|
use plonky2::field::packed::PackedField;
|
|
use plonky2::field::types::Field;
|
|
use plonky2::hash::hash_types::RichField;
|
|
use plonky2::iop::ext_target::ExtensionTarget;
|
|
|
|
use crate::arithmetic::columns::*;
|
|
use crate::arithmetic::utils::*;
|
|
use crate::constraint_consumer::{ConstraintConsumer, RecursiveConstraintConsumer};
|
|
use crate::range_check_error;
|
|
|
|
pub fn generate<F: RichField>(lv: &mut [F; NUM_ARITH_COLUMNS]) {
|
|
let input0 = read_value_i64_limbs(lv, MUL_INPUT_0);
|
|
let input1 = read_value_i64_limbs(lv, MUL_INPUT_1);
|
|
|
|
const MASK: i64 = (1i64 << LIMB_BITS) - 1i64;
|
|
|
|
// Input and output have 16-bit limbs
|
|
let mut output_limbs = [0i64; N_LIMBS];
|
|
|
|
// Column-wise pen-and-paper long multiplication on 16-bit limbs.
|
|
// First calculate the coefficients of a(x)*b(x) (in unreduced_prod),
|
|
// then do carry propagation to obtain C = c(β) = a(β)*b(β).
|
|
let mut cy = 0i64;
|
|
let mut unreduced_prod = pol_mul_lo(input0, input1);
|
|
for col in 0..N_LIMBS {
|
|
let t = unreduced_prod[col] + cy;
|
|
cy = t >> LIMB_BITS;
|
|
output_limbs[col] = t & MASK;
|
|
}
|
|
// In principle, the last cy could be dropped because this is
|
|
// multiplication modulo 2^256. However, we need it below for
|
|
// aux_limbs to handle the fact that unreduced_prod will
|
|
// inevitably contain one digit's worth that is > 2^256.
|
|
|
|
lv[MUL_OUTPUT].copy_from_slice(&output_limbs.map(|c| F::from_canonical_i64(c)));
|
|
pol_sub_assign(&mut unreduced_prod, &output_limbs);
|
|
|
|
let mut aux_limbs = pol_remove_root_2exp::<LIMB_BITS, _, N_LIMBS>(unreduced_prod);
|
|
aux_limbs[N_LIMBS - 1] = -cy;
|
|
|
|
lv[MUL_AUX_INPUT].copy_from_slice(&aux_limbs.map(|c| F::from_noncanonical_i64(c)));
|
|
}
|
|
|
|
pub fn eval_packed_generic<P: PackedField>(
|
|
lv: &[P; NUM_ARITH_COLUMNS],
|
|
yield_constr: &mut ConstraintConsumer<P>,
|
|
) {
|
|
range_check_error!(MUL_INPUT_0, 16);
|
|
range_check_error!(MUL_INPUT_1, 16);
|
|
range_check_error!(MUL_OUTPUT, 16);
|
|
range_check_error!(MUL_AUX_INPUT, 20);
|
|
|
|
let is_mul = lv[IS_MUL];
|
|
let input0_limbs = read_value::<N_LIMBS, _>(lv, MUL_INPUT_0);
|
|
let input1_limbs = read_value::<N_LIMBS, _>(lv, MUL_INPUT_1);
|
|
let output_limbs = read_value::<N_LIMBS, _>(lv, MUL_OUTPUT);
|
|
let aux_limbs = read_value::<N_LIMBS, _>(lv, MUL_AUX_INPUT);
|
|
|
|
// Constraint poly holds the coefficients of the polynomial that
|
|
// must be identically zero for this multiplication to be
|
|
// verified.
|
|
//
|
|
// These two lines set constr_poly to the polynomial a(x)b(x) - c(x),
|
|
// where a, b and c are the polynomials
|
|
//
|
|
// a(x) = \sum_i input0_limbs[i] * x^i
|
|
// b(x) = \sum_i input1_limbs[i] * x^i
|
|
// c(x) = \sum_i output_limbs[i] * x^i
|
|
//
|
|
// This polynomial should equal (x - β)*s(x) where s is
|
|
//
|
|
// s(x) = \sum_i aux_limbs[i] * x^i
|
|
//
|
|
let mut constr_poly = pol_mul_lo(input0_limbs, input1_limbs);
|
|
pol_sub_assign(&mut constr_poly, &output_limbs);
|
|
|
|
// This subtracts (x - β) * s(x) from constr_poly.
|
|
let base = P::Scalar::from_canonical_u64(1 << LIMB_BITS);
|
|
pol_sub_assign(&mut constr_poly, &pol_adjoin_root(aux_limbs, base));
|
|
|
|
// At this point constr_poly holds the coefficients of the
|
|
// polynomial a(x)b(x) - c(x) - (x - β)*s(x). The
|
|
// multiplication is valid if and only if all of those
|
|
// coefficients are zero.
|
|
for &c in &constr_poly {
|
|
yield_constr.constraint(is_mul * c);
|
|
}
|
|
}
|
|
|
|
pub fn eval_ext_circuit<F: RichField + Extendable<D>, const D: usize>(
|
|
builder: &mut plonky2::plonk::circuit_builder::CircuitBuilder<F, D>,
|
|
lv: &[ExtensionTarget<D>; NUM_ARITH_COLUMNS],
|
|
yield_constr: &mut RecursiveConstraintConsumer<F, D>,
|
|
) {
|
|
let is_mul = lv[IS_MUL];
|
|
let input0_limbs = read_value::<N_LIMBS, _>(lv, MUL_INPUT_0);
|
|
let input1_limbs = read_value::<N_LIMBS, _>(lv, MUL_INPUT_1);
|
|
let output_limbs = read_value::<N_LIMBS, _>(lv, MUL_OUTPUT);
|
|
let aux_limbs = read_value::<N_LIMBS, _>(lv, MUL_AUX_INPUT);
|
|
|
|
let mut constr_poly = pol_mul_lo_ext_circuit(builder, input0_limbs, input1_limbs);
|
|
pol_sub_assign_ext_circuit(builder, &mut constr_poly, &output_limbs);
|
|
|
|
let base = builder.constant_extension(F::Extension::from_canonical_u64(1 << LIMB_BITS));
|
|
let rhs = pol_adjoin_root_ext_circuit(builder, aux_limbs, base);
|
|
pol_sub_assign_ext_circuit(builder, &mut constr_poly, &rhs);
|
|
|
|
for &c in &constr_poly {
|
|
let filter = builder.mul_extension(is_mul, c);
|
|
yield_constr.constraint(builder, filter);
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use plonky2::field::goldilocks_field::GoldilocksField;
|
|
use plonky2::field::types::{Field, Sample};
|
|
use rand::{Rng, SeedableRng};
|
|
use rand_chacha::ChaCha8Rng;
|
|
|
|
use super::*;
|
|
use crate::arithmetic::columns::NUM_ARITH_COLUMNS;
|
|
use crate::constraint_consumer::ConstraintConsumer;
|
|
|
|
const N_RND_TESTS: usize = 1000;
|
|
|
|
// TODO: Should be able to refactor this test to apply to all operations.
|
|
#[test]
|
|
fn generate_eval_consistency_not_mul() {
|
|
type F = GoldilocksField;
|
|
|
|
let mut rng = ChaCha8Rng::seed_from_u64(0x6feb51b7ec230f25);
|
|
let mut lv = [F::default(); NUM_ARITH_COLUMNS].map(|_| F::sample(&mut rng));
|
|
|
|
// if `IS_MUL == 0`, then the constraints should be met even
|
|
// if all values are garbage.
|
|
lv[IS_MUL] = F::ZERO;
|
|
|
|
let mut constraint_consumer = ConstraintConsumer::new(
|
|
vec![GoldilocksField(2), GoldilocksField(3), GoldilocksField(5)],
|
|
GoldilocksField::ONE,
|
|
GoldilocksField::ONE,
|
|
GoldilocksField::ONE,
|
|
);
|
|
eval_packed_generic(&lv, &mut constraint_consumer);
|
|
for &acc in &constraint_consumer.constraint_accs {
|
|
assert_eq!(acc, GoldilocksField::ZERO);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn generate_eval_consistency_mul() {
|
|
type F = GoldilocksField;
|
|
|
|
let mut rng = ChaCha8Rng::seed_from_u64(0x6feb51b7ec230f25);
|
|
let mut lv = [F::default(); NUM_ARITH_COLUMNS].map(|_| F::sample(&mut rng));
|
|
|
|
// set `IS_MUL == 1` and ensure all constraints are satisfied.
|
|
lv[IS_MUL] = F::ONE;
|
|
|
|
for _i in 0..N_RND_TESTS {
|
|
// set inputs to random values
|
|
for (ai, bi) in MUL_INPUT_0.zip(MUL_INPUT_1) {
|
|
lv[ai] = F::from_canonical_u16(rng.gen());
|
|
lv[bi] = F::from_canonical_u16(rng.gen());
|
|
}
|
|
|
|
generate(&mut lv);
|
|
|
|
let mut constraint_consumer = ConstraintConsumer::new(
|
|
vec![GoldilocksField(2), GoldilocksField(3), GoldilocksField(5)],
|
|
GoldilocksField::ONE,
|
|
GoldilocksField::ONE,
|
|
GoldilocksField::ONE,
|
|
);
|
|
eval_packed_generic(&lv, &mut constraint_consumer);
|
|
for &acc in &constraint_consumer.constraint_accs {
|
|
assert_eq!(acc, GoldilocksField::ZERO);
|
|
}
|
|
}
|
|
}
|
|
}
|