plonky2/evm/src/cross_table_lookup.rs
2022-08-26 10:12:45 +02:00

804 lines
28 KiB
Rust

use std::iter::repeat;
use anyhow::{ensure, Result};
use itertools::Itertools;
use plonky2::field::extension::{Extendable, FieldExtension};
use plonky2::field::packed::PackedField;
use plonky2::field::polynomial::PolynomialValues;
use plonky2::field::types::Field;
use plonky2::hash::hash_types::RichField;
use plonky2::iop::challenger::Challenger;
use plonky2::iop::ext_target::ExtensionTarget;
use plonky2::iop::target::Target;
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2::plonk::config::GenericConfig;
use crate::all_stark::{Table, NUM_TABLES};
use crate::config::StarkConfig;
use crate::constraint_consumer::{ConstraintConsumer, RecursiveConstraintConsumer};
use crate::permutation::{
get_grand_product_challenge_set, GrandProductChallenge, GrandProductChallengeSet,
};
use crate::proof::{StarkProof, StarkProofTarget};
use crate::stark::Stark;
use crate::vars::{StarkEvaluationTargets, StarkEvaluationVars};
/// Represent a linear combination of columns.
#[derive(Clone, Debug)]
pub struct Column<F: Field> {
linear_combination: Vec<(usize, F)>,
constant: F,
}
impl<F: Field> Column<F> {
pub fn single(c: usize) -> Self {
Self {
linear_combination: vec![(c, F::ONE)],
constant: F::ZERO,
}
}
pub fn singles<I: IntoIterator<Item = usize>>(cs: I) -> impl Iterator<Item = Self> {
cs.into_iter().map(Self::single)
}
pub fn constant(constant: F) -> Self {
Self {
linear_combination: vec![],
constant,
}
}
pub fn zero() -> Self {
Self::constant(F::ZERO)
}
pub fn linear_combination_with_constant<I: IntoIterator<Item = (usize, F)>>(
iter: I,
constant: F,
) -> Self {
let v = iter.into_iter().collect::<Vec<_>>();
assert!(!v.is_empty());
debug_assert_eq!(
v.iter().map(|(c, _)| c).unique().count(),
v.len(),
"Duplicate columns."
);
Self {
linear_combination: v,
constant,
}
}
pub fn linear_combination<I: IntoIterator<Item = (usize, F)>>(iter: I) -> Self {
Self::linear_combination_with_constant(iter, F::ZERO)
}
pub fn le_bits<I: IntoIterator<Item = usize>>(cs: I) -> Self {
Self::linear_combination(cs.into_iter().zip(F::TWO.powers()))
}
pub fn le_bytes<I: IntoIterator<Item = usize>>(cs: I) -> Self {
Self::linear_combination(cs.into_iter().zip(F::from_canonical_u16(256).powers()))
}
pub fn sum<I: IntoIterator<Item = usize>>(cs: I) -> Self {
Self::linear_combination(cs.into_iter().zip(repeat(F::ONE)))
}
pub fn eval<FE, P, const D: usize>(&self, v: &[P]) -> P
where
FE: FieldExtension<D, BaseField = F>,
P: PackedField<Scalar = FE>,
{
self.linear_combination
.iter()
.map(|&(c, f)| v[c] * FE::from_basefield(f))
.sum::<P>()
+ FE::from_basefield(self.constant)
}
/// Evaluate on an row of a table given in column-major form.
pub fn eval_table(&self, table: &[PolynomialValues<F>], row: usize) -> F {
self.linear_combination
.iter()
.map(|&(c, f)| table[c].values[row] * f)
.sum::<F>()
+ self.constant
}
pub fn eval_circuit<const D: usize>(
&self,
builder: &mut CircuitBuilder<F, D>,
v: &[ExtensionTarget<D>],
) -> ExtensionTarget<D>
where
F: RichField + Extendable<D>,
{
let pairs = self
.linear_combination
.iter()
.map(|&(c, f)| {
(
v[c],
builder.constant_extension(F::Extension::from_basefield(f)),
)
})
.collect::<Vec<_>>();
let constant = builder.constant_extension(F::Extension::from_basefield(self.constant));
builder.inner_product_extension(F::ONE, constant, pairs)
}
}
#[derive(Clone, Debug)]
pub struct TableWithColumns<F: Field> {
table: Table,
columns: Vec<Column<F>>,
filter_column: Option<Column<F>>,
}
impl<F: Field> TableWithColumns<F> {
pub fn new(table: Table, columns: Vec<Column<F>>, filter_column: Option<Column<F>>) -> Self {
Self {
table,
columns,
filter_column,
}
}
}
#[derive(Clone)]
pub struct CrossTableLookup<F: Field> {
looking_tables: Vec<TableWithColumns<F>>,
looked_table: TableWithColumns<F>,
/// Default value if filters are not used.
default: Option<Vec<F>>,
}
impl<F: Field> CrossTableLookup<F> {
pub fn new(
looking_tables: Vec<TableWithColumns<F>>,
looked_table: TableWithColumns<F>,
default: Option<Vec<F>>,
) -> Self {
assert!(looking_tables
.iter()
.all(|twc| twc.columns.len() == looked_table.columns.len()));
assert!(
looking_tables
.iter()
.all(|twc| twc.filter_column.is_none() == default.is_some())
&& default.is_some() == looked_table.filter_column.is_none(),
"Default values should be provided iff there are no filter columns."
);
if let Some(default) = &default {
assert_eq!(default.len(), looked_table.columns.len());
}
Self {
looking_tables,
looked_table,
default,
}
}
}
/// Cross-table lookup data for one table.
#[derive(Clone, Default)]
pub struct CtlData<F: Field> {
pub(crate) zs_columns: Vec<CtlZData<F>>,
}
/// Cross-table lookup data associated with one Z(x) polynomial.
#[derive(Clone)]
pub(crate) struct CtlZData<F: Field> {
pub(crate) z: PolynomialValues<F>,
pub(crate) challenge: GrandProductChallenge<F>,
pub(crate) columns: Vec<Column<F>>,
pub(crate) filter_column: Option<Column<F>>,
}
impl<F: Field> CtlData<F> {
pub fn len(&self) -> usize {
self.zs_columns.len()
}
pub fn is_empty(&self) -> bool {
self.zs_columns.is_empty()
}
pub fn z_polys(&self) -> Vec<PolynomialValues<F>> {
self.zs_columns
.iter()
.map(|zs_columns| zs_columns.z.clone())
.collect()
}
}
pub fn cross_table_lookup_data<F: RichField, C: GenericConfig<D, F = F>, const D: usize>(
config: &StarkConfig,
trace_poly_values: &[Vec<PolynomialValues<F>>; NUM_TABLES],
cross_table_lookups: &[CrossTableLookup<F>],
challenger: &mut Challenger<F, C::Hasher>,
) -> [CtlData<F>; NUM_TABLES] {
let challenges = get_grand_product_challenge_set(challenger, config.num_challenges);
let mut ctl_data_per_table = [0; NUM_TABLES].map(|_| CtlData::default());
for CrossTableLookup {
looking_tables,
looked_table,
default,
} in cross_table_lookups
{
for &challenge in &challenges.challenges {
let zs_looking = looking_tables.iter().map(|table| {
partial_products(
&trace_poly_values[table.table as usize],
&table.columns,
&table.filter_column,
challenge,
)
});
let z_looked = partial_products(
&trace_poly_values[looked_table.table as usize],
&looked_table.columns,
&looked_table.filter_column,
challenge,
);
debug_assert_eq!(
zs_looking
.clone()
.map(|z| *z.values.last().unwrap())
.product::<F>(),
*z_looked.values.last().unwrap()
* default
.as_ref()
.map(|default| {
challenge.combine(default).exp_u64(
looking_tables
.iter()
.map(|table| {
trace_poly_values[table.table as usize][0].len() as u64
})
.sum::<u64>()
- trace_poly_values[looked_table.table as usize][0].len()
as u64,
)
})
.unwrap_or(F::ONE)
);
for (table, z) in looking_tables.iter().zip(zs_looking) {
ctl_data_per_table[table.table as usize]
.zs_columns
.push(CtlZData {
z,
challenge,
columns: table.columns.clone(),
filter_column: table.filter_column.clone(),
});
}
ctl_data_per_table[looked_table.table as usize]
.zs_columns
.push(CtlZData {
z: z_looked,
challenge,
columns: looked_table.columns.clone(),
filter_column: looked_table.filter_column.clone(),
});
}
}
ctl_data_per_table
}
fn partial_products<F: Field>(
trace: &[PolynomialValues<F>],
columns: &[Column<F>],
filter_column: &Option<Column<F>>,
challenge: GrandProductChallenge<F>,
) -> PolynomialValues<F> {
let mut partial_prod = F::ONE;
let degree = trace[0].len();
let mut res = Vec::with_capacity(degree);
for i in 0..degree {
let filter = if let Some(column) = filter_column {
column.eval_table(trace, i)
} else {
F::ONE
};
if filter.is_one() {
let evals = columns
.iter()
.map(|c| c.eval_table(trace, i))
.collect::<Vec<_>>();
partial_prod *= challenge.combine(evals.iter());
} else {
assert_eq!(filter, F::ZERO, "Non-binary filter?")
};
res.push(partial_prod);
}
res.into()
}
#[derive(Clone)]
pub struct CtlCheckVars<'a, F, FE, P, const D2: usize>
where
F: Field,
FE: FieldExtension<D2, BaseField = F>,
P: PackedField<Scalar = FE>,
{
pub(crate) local_z: P,
pub(crate) next_z: P,
pub(crate) challenges: GrandProductChallenge<F>,
pub(crate) columns: &'a [Column<F>],
pub(crate) filter_column: &'a Option<Column<F>>,
}
impl<'a, F: RichField + Extendable<D>, const D: usize>
CtlCheckVars<'a, F, F::Extension, F::Extension, D>
{
pub(crate) fn from_proofs<C: GenericConfig<D, F = F>>(
proofs: &[StarkProof<F, C, D>; NUM_TABLES],
cross_table_lookups: &'a [CrossTableLookup<F>],
ctl_challenges: &'a GrandProductChallengeSet<F>,
num_permutation_zs: &[usize; NUM_TABLES],
) -> [Vec<Self>; NUM_TABLES] {
let mut ctl_zs = proofs
.iter()
.zip(num_permutation_zs)
.map(|(p, &num_perms)| {
let openings = &p.openings;
let ctl_zs = openings.permutation_ctl_zs.iter().skip(num_perms);
let ctl_zs_next = openings.permutation_ctl_zs_next.iter().skip(num_perms);
ctl_zs.zip(ctl_zs_next)
})
.collect::<Vec<_>>();
let mut ctl_vars_per_table = [0; NUM_TABLES].map(|_| vec![]);
for CrossTableLookup {
looking_tables,
looked_table,
..
} in cross_table_lookups
{
for &challenges in &ctl_challenges.challenges {
for table in looking_tables {
let (looking_z, looking_z_next) = ctl_zs[table.table as usize].next().unwrap();
ctl_vars_per_table[table.table as usize].push(Self {
local_z: *looking_z,
next_z: *looking_z_next,
challenges,
columns: &table.columns,
filter_column: &table.filter_column,
});
}
let (looked_z, looked_z_next) = ctl_zs[looked_table.table as usize].next().unwrap();
ctl_vars_per_table[looked_table.table as usize].push(Self {
local_z: *looked_z,
next_z: *looked_z_next,
challenges,
columns: &looked_table.columns,
filter_column: &looked_table.filter_column,
});
}
}
ctl_vars_per_table
}
}
pub(crate) fn eval_cross_table_lookup_checks<F, FE, P, C, S, const D: usize, const D2: usize>(
vars: StarkEvaluationVars<FE, P, { S::COLUMNS }>,
ctl_vars: &[CtlCheckVars<F, FE, P, D2>],
consumer: &mut ConstraintConsumer<P>,
) where
F: RichField + Extendable<D>,
FE: FieldExtension<D2, BaseField = F>,
P: PackedField<Scalar = FE>,
C: GenericConfig<D, F = F>,
S: Stark<F, D>,
{
for lookup_vars in ctl_vars {
let CtlCheckVars {
local_z,
next_z,
challenges,
columns,
filter_column,
} = lookup_vars;
let combine = |v: &[P]| -> P {
let evals = columns.iter().map(|c| c.eval(v)).collect::<Vec<_>>();
challenges.combine(evals.iter())
};
let filter = |v: &[P]| -> P {
if let Some(column) = filter_column {
column.eval(v)
} else {
P::ONES
}
};
let local_filter = filter(vars.local_values);
let next_filter = filter(vars.next_values);
let select = |filter, x| filter * x + P::ONES - filter;
// Check value of `Z(1)`
consumer.constraint_first_row(*local_z - select(local_filter, combine(vars.local_values)));
// Check `Z(gw) = combination * Z(w)`
consumer.constraint_transition(
*next_z - *local_z * select(next_filter, combine(vars.next_values)),
);
}
}
#[derive(Clone)]
pub struct CtlCheckVarsTarget<'a, F: Field, const D: usize> {
pub(crate) local_z: ExtensionTarget<D>,
pub(crate) next_z: ExtensionTarget<D>,
pub(crate) challenges: GrandProductChallenge<Target>,
pub(crate) columns: &'a [Column<F>],
pub(crate) filter_column: &'a Option<Column<F>>,
}
impl<'a, F: Field, const D: usize> CtlCheckVarsTarget<'a, F, D> {
pub(crate) fn from_proofs(
proofs: &[StarkProofTarget<D>; NUM_TABLES],
cross_table_lookups: &'a [CrossTableLookup<F>],
ctl_challenges: &'a GrandProductChallengeSet<Target>,
num_permutation_zs: &[usize; NUM_TABLES],
) -> [Vec<Self>; NUM_TABLES] {
let mut ctl_zs = proofs
.iter()
.zip(num_permutation_zs)
.map(|(p, &num_perms)| {
let openings = &p.openings;
let ctl_zs = openings.permutation_ctl_zs.iter().skip(num_perms);
let ctl_zs_next = openings.permutation_ctl_zs_next.iter().skip(num_perms);
ctl_zs.zip(ctl_zs_next)
})
.collect::<Vec<_>>();
let mut ctl_vars_per_table = [0; NUM_TABLES].map(|_| vec![]);
for CrossTableLookup {
looking_tables,
looked_table,
..
} in cross_table_lookups
{
for &challenges in &ctl_challenges.challenges {
for table in looking_tables {
let (looking_z, looking_z_next) = ctl_zs[table.table as usize].next().unwrap();
ctl_vars_per_table[table.table as usize].push(Self {
local_z: *looking_z,
next_z: *looking_z_next,
challenges,
columns: &table.columns,
filter_column: &table.filter_column,
});
}
let (looked_z, looked_z_next) = ctl_zs[looked_table.table as usize].next().unwrap();
ctl_vars_per_table[looked_table.table as usize].push(Self {
local_z: *looked_z,
next_z: *looked_z_next,
challenges,
columns: &looked_table.columns,
filter_column: &looked_table.filter_column,
});
}
}
ctl_vars_per_table
}
}
pub(crate) fn eval_cross_table_lookup_checks_circuit<
S: Stark<F, D>,
F: RichField + Extendable<D>,
const D: usize,
>(
builder: &mut CircuitBuilder<F, D>,
vars: StarkEvaluationTargets<D, { S::COLUMNS }>,
ctl_vars: &[CtlCheckVarsTarget<F, D>],
consumer: &mut RecursiveConstraintConsumer<F, D>,
) {
for lookup_vars in ctl_vars {
let CtlCheckVarsTarget {
local_z,
next_z,
challenges,
columns,
filter_column,
} = lookup_vars;
let one = builder.one_extension();
let local_filter = if let Some(column) = filter_column {
column.eval_circuit(builder, vars.local_values)
} else {
one
};
let next_filter = if let Some(column) = filter_column {
column.eval_circuit(builder, vars.next_values)
} else {
one
};
fn select<F: RichField + Extendable<D>, const D: usize>(
builder: &mut CircuitBuilder<F, D>,
filter: ExtensionTarget<D>,
x: ExtensionTarget<D>,
) -> ExtensionTarget<D> {
let one = builder.one_extension();
let tmp = builder.sub_extension(one, filter);
builder.mul_add_extension(filter, x, tmp) // filter * x + 1 - filter
}
// Check value of `Z(1)`
let local_columns_eval = columns
.iter()
.map(|c| c.eval_circuit(builder, vars.local_values))
.collect::<Vec<_>>();
let combined_local = challenges.combine_circuit(builder, &local_columns_eval);
let selected_local = select(builder, local_filter, combined_local);
let first_row = builder.sub_extension(*local_z, selected_local);
consumer.constraint_first_row(builder, first_row);
// Check `Z(gw) = combination * Z(w)`
let next_columns_eval = columns
.iter()
.map(|c| c.eval_circuit(builder, vars.next_values))
.collect::<Vec<_>>();
let combined_next = challenges.combine_circuit(builder, &next_columns_eval);
let selected_next = select(builder, next_filter, combined_next);
let mut transition = builder.mul_extension(*local_z, selected_next);
transition = builder.sub_extension(*next_z, transition);
consumer.constraint_transition(builder, transition);
}
}
pub(crate) fn verify_cross_table_lookups<
F: RichField + Extendable<D>,
C: GenericConfig<D, F = F>,
const D: usize,
>(
cross_table_lookups: Vec<CrossTableLookup<F>>,
proofs: &[StarkProof<F, C, D>; NUM_TABLES],
challenges: GrandProductChallengeSet<F>,
config: &StarkConfig,
) -> Result<()> {
let degrees_bits = proofs
.iter()
.map(|p| p.recover_degree_bits(config))
.collect::<Vec<_>>();
let mut ctl_zs_openings = proofs
.iter()
.map(|p| p.openings.ctl_zs_last.iter())
.collect::<Vec<_>>();
for (
i,
CrossTableLookup {
looking_tables,
looked_table,
default,
..
},
) in cross_table_lookups.into_iter().enumerate()
{
for _ in 0..config.num_challenges {
let looking_degrees_sum = looking_tables
.iter()
.map(|table| 1 << degrees_bits[table.table as usize])
.sum::<u64>();
let looked_degree = 1 << degrees_bits[looked_table.table as usize];
let looking_zs_prod = looking_tables
.iter()
.map(|table| *ctl_zs_openings[table.table as usize].next().unwrap())
.product::<F>();
let looked_z = *ctl_zs_openings[looked_table.table as usize].next().unwrap();
let challenge = challenges.challenges[i % config.num_challenges];
let combined_default = default
.as_ref()
.map(|default| challenge.combine(default.iter()))
.unwrap_or(F::ONE);
ensure!(
looking_zs_prod
== looked_z * combined_default.exp_u64(looking_degrees_sum - looked_degree),
"Cross-table lookup verification failed."
);
}
}
debug_assert!(ctl_zs_openings.iter_mut().all(|iter| iter.next().is_none()));
Ok(())
}
pub(crate) fn verify_cross_table_lookups_circuit<
F: RichField + Extendable<D>,
C: GenericConfig<D, F = F>,
const D: usize,
>(
builder: &mut CircuitBuilder<F, D>,
cross_table_lookups: Vec<CrossTableLookup<F>>,
proofs: &[StarkProofTarget<D>; NUM_TABLES],
challenges: GrandProductChallengeSet<Target>,
inner_config: &StarkConfig,
) {
let degrees_bits = proofs
.iter()
.map(|p| p.recover_degree_bits(inner_config))
.collect::<Vec<_>>();
let mut ctl_zs_openings = proofs
.iter()
.map(|p| p.openings.ctl_zs_last.iter())
.collect::<Vec<_>>();
for (
i,
CrossTableLookup {
looking_tables,
looked_table,
default,
..
},
) in cross_table_lookups.into_iter().enumerate()
{
for _ in 0..inner_config.num_challenges {
let looking_degrees_sum = looking_tables
.iter()
.map(|table| 1 << degrees_bits[table.table as usize])
.sum::<u64>();
let looked_degree = 1 << degrees_bits[looked_table.table as usize];
let looking_zs_prod = builder.mul_many(
looking_tables
.iter()
.map(|table| *ctl_zs_openings[table.table as usize].next().unwrap()),
);
let looked_z = *ctl_zs_openings[looked_table.table as usize].next().unwrap();
let challenge = challenges.challenges[i % inner_config.num_challenges];
if let Some(default) = default.as_ref() {
let default = default
.iter()
.map(|&x| builder.constant(x))
.collect::<Vec<_>>();
let combined_default = challenge.combine_base_circuit(builder, &default);
let pad = builder.exp_u64(combined_default, looking_degrees_sum - looked_degree);
let padded_looked_z = builder.mul(looked_z, pad);
builder.connect(looking_zs_prod, padded_looked_z);
} else {
builder.connect(looking_zs_prod, looked_z);
}
}
}
debug_assert!(ctl_zs_openings.iter_mut().all(|iter| iter.next().is_none()));
}
#[cfg(test)]
pub(crate) mod testutils {
use std::collections::HashMap;
use plonky2::field::polynomial::PolynomialValues;
use plonky2::field::types::Field;
use crate::all_stark::Table;
use crate::cross_table_lookup::{CrossTableLookup, TableWithColumns};
type MultiSet<F> = HashMap<Vec<F>, Vec<(Table, usize)>>;
/// Check that the provided traces and cross-table lookups are consistent.
pub(crate) fn check_ctls<F: Field>(
trace_poly_values: &[Vec<PolynomialValues<F>>],
cross_table_lookups: &[CrossTableLookup<F>],
) {
for (i, ctl) in cross_table_lookups.iter().enumerate() {
check_ctl(trace_poly_values, ctl, i);
}
}
fn check_ctl<F: Field>(
trace_poly_values: &[Vec<PolynomialValues<F>>],
ctl: &CrossTableLookup<F>,
ctl_index: usize,
) {
let CrossTableLookup {
looking_tables,
looked_table,
default,
} = ctl;
// Maps `m` with `(table, i) in m[row]` iff the `i`-th row of `table` is equal to `row` and
// the filter is 1. Without default values, the CTL check holds iff `looking_multiset == looked_multiset`.
let mut looking_multiset = MultiSet::<F>::new();
let mut looked_multiset = MultiSet::<F>::new();
for table in looking_tables {
process_table(trace_poly_values, table, &mut looking_multiset);
}
process_table(trace_poly_values, looked_table, &mut looked_multiset);
let empty = &vec![];
// Check that every row in the looking tables appears in the looked table the same number of times
// with some special logic for the default row.
for (row, looking_locations) in &looking_multiset {
let looked_locations = looked_multiset.get(row).unwrap_or(empty);
if let Some(default) = default {
if row == default {
continue;
}
}
check_locations(looking_locations, looked_locations, ctl_index, row);
}
let extra_default_count = default.as_ref().map(|d| {
let looking_default_locations = looking_multiset.get(d).unwrap_or(empty);
let looked_default_locations = looked_multiset.get(d).unwrap_or(empty);
looking_default_locations
.len()
.checked_sub(looked_default_locations.len())
.unwrap_or_else(|| {
// If underflow, panic. There should be more default rows in the looking side.
check_locations(
looking_default_locations,
looked_default_locations,
ctl_index,
d,
);
unreachable!()
})
});
// Check that the number of extra default rows is correct.
if let Some(count) = extra_default_count {
assert_eq!(
count,
looking_tables
.iter()
.map(|table| trace_poly_values[table.table as usize][0].len())
.sum::<usize>()
- trace_poly_values[looked_table.table as usize][0].len()
);
}
// Check that every row in the looked tables appears in the looked table the same number of times.
for (row, looked_locations) in &looked_multiset {
let looking_locations = looking_multiset.get(row).unwrap_or(empty);
check_locations(looking_locations, looked_locations, ctl_index, row);
}
}
fn process_table<F: Field>(
trace_poly_values: &[Vec<PolynomialValues<F>>],
table: &TableWithColumns<F>,
multiset: &mut MultiSet<F>,
) {
let trace = &trace_poly_values[table.table as usize];
for i in 0..trace[0].len() {
let filter = if let Some(column) = &table.filter_column {
column.eval_table(trace, i)
} else {
F::ONE
};
if filter.is_one() {
let row = table
.columns
.iter()
.map(|c| c.eval_table(trace, i))
.collect::<Vec<_>>();
multiset.entry(row).or_default().push((table.table, i));
} else {
assert_eq!(filter, F::ZERO, "Non-binary filter?")
}
}
}
fn check_locations<F: Field>(
looking_locations: &[(Table, usize)],
looked_locations: &[(Table, usize)],
ctl_index: usize,
row: &[F],
) {
if looking_locations.len() != looked_locations.len() {
panic!(
"CTL #{ctl_index}:\n\
Row {row:?} is present {l0} times in the looking tables, but {l1} times in the looked table.\n\
Looking locations (Table, Row index): {looking_locations:?}.\n\
Looked locations (Table, Row index): {looked_locations:?}.",
l0 = looking_locations.len(),
l1 = looked_locations.len(),
);
}
}
}