plonky2/evm/src/generation/prover_input.rs
2022-10-21 18:00:41 +02:00

183 lines
5.2 KiB
Rust

use std::str::FromStr;
use ethereum_types::{BigEndianHash, H256, U256};
use plonky2::field::types::Field;
use crate::generation::prover_input::EvmField::{
Bn254Base, Bn254Scalar, Secp256k1Base, Secp256k1Scalar,
};
use crate::generation::prover_input::FieldOp::{Inverse, Sqrt};
use crate::generation::state::GenerationState;
/// Prover input function represented as a scoped function name.
/// Example: `PROVER_INPUT(ff::bn254_base::inverse)` is represented as `ProverInputFn([ff, bn254_base, inverse])`.
#[derive(PartialEq, Eq, Debug, Clone)]
pub struct ProverInputFn(Vec<String>);
impl From<Vec<String>> for ProverInputFn {
fn from(v: Vec<String>) -> Self {
Self(v)
}
}
impl<F: Field> GenerationState<F> {
#[allow(unused)] // TODO: Should be used soon.
pub(crate) fn prover_input(&mut self, stack: &[U256], input_fn: &ProverInputFn) -> U256 {
match input_fn.0[0].as_str() {
"end_of_txns" => self.run_end_of_txns(),
"ff" => self.run_ff(stack, input_fn),
"mpt" => self.run_mpt(),
"rlp" => self.run_rlp(),
"account_code" => self.run_account_code(stack, input_fn),
_ => panic!("Unrecognized prover input function."),
}
}
fn run_end_of_txns(&mut self) -> U256 {
let end = self.next_txn_index == self.inputs.signed_txns.len();
if end {
U256::one()
} else {
self.next_txn_index += 1;
U256::zero()
}
}
/// Finite field operations.
fn run_ff(&self, stack: &[U256], input_fn: &ProverInputFn) -> U256 {
let field = EvmField::from_str(input_fn.0[1].as_str()).unwrap();
let op = FieldOp::from_str(input_fn.0[2].as_str()).unwrap();
let x = *stack.last().expect("Empty stack");
field.op(op, x)
}
/// MPT data.
fn run_mpt(&mut self) -> U256 {
self.mpt_prover_inputs
.pop()
.unwrap_or_else(|| panic!("Out of MPT data"))
}
/// RLP data.
fn run_rlp(&mut self) -> U256 {
self.rlp_prover_inputs
.pop()
.unwrap_or_else(|| panic!("Out of RLP data"))
}
/// Account code
fn run_account_code(&mut self, stack: &[U256], input_fn: &ProverInputFn) -> U256 {
match input_fn.0[1].as_str() {
"length" => {
let codehash = stack.last().expect("Empty stack");
self.inputs.contract_code[&H256::from_uint(codehash)]
.len()
.into()
}
"get" => {
let stacklen = stack.len();
// Stack looks like: i, code_length, codehash
let i = stack[stacklen - 1].as_usize();
let codehash = stack[stacklen - 3];
self.inputs.contract_code[&H256::from_uint(&codehash)][i].into()
}
_ => panic!("sup?"),
}
}
}
enum EvmField {
Bn254Base,
Bn254Scalar,
Secp256k1Base,
Secp256k1Scalar,
}
enum FieldOp {
Inverse,
Sqrt,
}
impl FromStr for EvmField {
type Err = ();
fn from_str(s: &str) -> Result<Self, Self::Err> {
Ok(match s {
"bn254_base" => Bn254Base,
"bn254_scalar" => Bn254Scalar,
"secp256k1_base" => Secp256k1Base,
"secp256k1_scalar" => Secp256k1Scalar,
_ => panic!("Unrecognized field."),
})
}
}
impl FromStr for FieldOp {
type Err = ();
fn from_str(s: &str) -> Result<Self, Self::Err> {
Ok(match s {
"inverse" => Inverse,
"sqrt" => Sqrt,
_ => panic!("Unrecognized field operation."),
})
}
}
impl EvmField {
fn order(&self) -> U256 {
match self {
EvmField::Bn254Base => {
U256::from_str("0x30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47")
.unwrap()
}
EvmField::Bn254Scalar => todo!(),
EvmField::Secp256k1Base => {
U256::from_str("0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f")
.unwrap()
}
EvmField::Secp256k1Scalar => {
U256::from_str("0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141")
.unwrap()
}
}
}
fn op(&self, op: FieldOp, x: U256) -> U256 {
match op {
FieldOp::Inverse => self.inverse(x),
FieldOp::Sqrt => self.sqrt(x),
}
}
fn inverse(&self, x: U256) -> U256 {
let n = self.order();
assert!(x < n);
modexp(x, n - 2, n)
}
fn sqrt(&self, x: U256) -> U256 {
let n = self.order();
assert!(x < n);
let (q, r) = (n + 1).div_mod(4.into());
assert!(
r.is_zero(),
"Only naive sqrt implementation for now. If needed implement Tonelli-Shanks."
);
modexp(x, q, n)
}
}
fn modexp(x: U256, e: U256, n: U256) -> U256 {
let mut current = x;
let mut product = U256::one();
for j in 0..256 {
if e.bit(j) {
product = U256::try_from(product.full_mul(current) % n).unwrap();
}
current = U256::try_from(current.full_mul(current) % n).unwrap();
}
product
}