plonky2/src/plonk_common.rs
2021-04-21 22:31:45 +02:00

90 lines
2.9 KiB
Rust

use crate::circuit_builder::CircuitBuilder;
use crate::field::field::Field;
use crate::gates::gate::GateRef;
use crate::target::Target;
use crate::vars::{EvaluationTargets, EvaluationVars};
/// Evaluates all gate constraints.
///
/// `num_gate_constraints` is the largest number of constraints imposed by any gate. It is not
/// strictly necessary, but it helps performance by ensuring that we allocate a vector with exactly
/// the capacity that we need.
pub fn evaluate_gate_constraints<F: Field>(
gates: &[GateRef<F>],
num_gate_constraints: usize,
vars: EvaluationVars<F>,
) -> Vec<F> {
let mut constraints = vec![F::ZERO; num_gate_constraints];
for gate in gates {
let gate_constraints = gate.0.eval_filtered(vars);
for (i, c) in gate_constraints.into_iter().enumerate() {
debug_assert!(
i < num_gate_constraints,
"num_constraints() gave too low of a number"
);
constraints[i] += c;
}
}
constraints
}
pub fn evaluate_gate_constraints_recursively<F: Field>(
builder: &mut CircuitBuilder<F>,
gates: &[GateRef<F>],
num_gate_constraints: usize,
vars: EvaluationTargets,
) -> Vec<Target> {
let mut constraints = vec![builder.zero(); num_gate_constraints];
for gate in gates {
let gate_constraints = gate.0.eval_filtered_recursively(builder, vars);
for (i, c) in gate_constraints.into_iter().enumerate() {
constraints[i] = builder.add(constraints[i], c);
}
}
constraints
}
/// Evaluate the polynomial which vanishes on any multiplicative subgroup of a given order `n`.
pub(crate) fn eval_zero_poly<F: Field>(n: usize, x: F) -> F {
// Z(x) = x^n - 1
x.exp_usize(n) - F::ONE
}
/// Evaluate the Lagrange basis `L_1` with `L_1(1) = 1`, and `L_1(x) = 0` for other members of an
/// order `n` multiplicative subgroup.
pub(crate) fn eval_l_1<F: Field>(n: usize, x: F) -> F {
if x.is_one() {
// The code below would divide by zero, since we have (x - 1) in both the numerator and
// denominator.
return F::ONE;
}
// L_1(x) = (x^n - 1) / (n * (x - 1))
// = Z(x) / (n * (x - 1))
eval_zero_poly(n, x) / (F::from_canonical_usize(n) * (x - F::ONE))
}
/// For each alpha in alphas, compute a reduction of the given terms using powers of alpha.
pub(crate) fn reduce_with_powers_multi<F: Field>(terms: &[F], alphas: &[F]) -> Vec<F> {
alphas
.iter()
.map(|&alpha| reduce_with_powers(terms, alpha))
.collect()
}
pub(crate) fn reduce_with_powers<F: Field>(terms: &[F], alpha: F) -> F {
let mut sum = F::ZERO;
for &term in terms.iter().rev() {
sum = sum * alpha + term;
}
sum
}
pub(crate) fn reduce_with_powers_recursive<F: Field>(
builder: &mut CircuitBuilder<F>,
terms: Vec<Target>,
alpha: Target,
) -> Target {
todo!()
}