mirror of
https://github.com/logos-storage/plonky2.git
synced 2026-01-06 15:53:10 +00:00
263 lines
8.8 KiB
Rust
263 lines
8.8 KiB
Rust
use std::marker::PhantomData;
|
|
|
|
use itertools::izip;
|
|
|
|
use crate::field::extension_field::Extendable;
|
|
use crate::field::field_types::{Field, RichField};
|
|
use crate::gates::assert_le::AssertLessThanGate;
|
|
use crate::iop::generator::{GeneratedValues, SimpleGenerator};
|
|
use crate::iop::target::{BoolTarget, Target};
|
|
use crate::iop::witness::{PartitionWitness, Witness};
|
|
use crate::plonk::circuit_builder::CircuitBuilder;
|
|
use crate::util::ceil_div_usize;
|
|
|
|
pub struct MemoryOp<F: Field> {
|
|
is_write: bool,
|
|
address: F,
|
|
timestamp: F,
|
|
value: F,
|
|
}
|
|
|
|
#[derive(Clone, Debug)]
|
|
pub struct MemoryOpTarget {
|
|
is_write: BoolTarget,
|
|
address: Target,
|
|
timestamp: Target,
|
|
value: Target,
|
|
}
|
|
|
|
impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
|
|
pub fn assert_permutation_memory_ops(&mut self, a: &[MemoryOpTarget], b: &[MemoryOpTarget]) {
|
|
let a_chunks: Vec<Vec<Target>> = a
|
|
.iter()
|
|
.map(|op| vec![op.address, op.timestamp, op.is_write.target, op.value])
|
|
.collect();
|
|
let b_chunks: Vec<Vec<Target>> = b
|
|
.iter()
|
|
.map(|op| vec![op.address, op.timestamp, op.is_write.target, op.value])
|
|
.collect();
|
|
|
|
self.assert_permutation(a_chunks, b_chunks);
|
|
}
|
|
|
|
/// Add an AssertLessThanGate to assert that `lhs` is less than `rhs`, where their values are at most `bits` bits.
|
|
pub fn assert_le(&mut self, lhs: Target, rhs: Target, bits: usize, num_chunks: usize) {
|
|
let gate = AssertLessThanGate::new(bits, num_chunks);
|
|
let gate_index = self.add_gate(gate.clone(), vec![]);
|
|
|
|
self.connect(Target::wire(gate_index, gate.wire_first_input()), lhs);
|
|
self.connect(Target::wire(gate_index, gate.wire_second_input()), rhs);
|
|
}
|
|
|
|
/// Sort memory operations by address value, then by timestamp value.
|
|
/// This is done by combining address and timestamp into one field element (using their given bit lengths).
|
|
pub fn sort_memory_ops(
|
|
&mut self,
|
|
ops: &[MemoryOpTarget],
|
|
address_bits: usize,
|
|
timestamp_bits: usize,
|
|
) -> Vec<MemoryOpTarget> {
|
|
let n = ops.len();
|
|
|
|
let combined_bits = address_bits + timestamp_bits;
|
|
let chunk_bits = 3;
|
|
let num_chunks = ceil_div_usize(combined_bits, chunk_bits);
|
|
|
|
// This is safe because `assert_permutation` will force these targets (in the output list) to match the boolean values from the input list.
|
|
let is_write_targets: Vec<_> = self
|
|
.add_virtual_targets(n)
|
|
.iter()
|
|
.map(|&t| BoolTarget::new_unsafe(t))
|
|
.collect();
|
|
|
|
let address_targets = self.add_virtual_targets(n);
|
|
let timestamp_targets = self.add_virtual_targets(n);
|
|
let value_targets = self.add_virtual_targets(n);
|
|
|
|
let output_targets: Vec<_> = izip!(
|
|
is_write_targets,
|
|
address_targets,
|
|
timestamp_targets,
|
|
value_targets
|
|
)
|
|
.map(|(i, a, t, v)| MemoryOpTarget {
|
|
is_write: i,
|
|
address: a,
|
|
timestamp: t,
|
|
value: v,
|
|
})
|
|
.collect();
|
|
|
|
let two_n = self.constant(F::from_canonical_usize(1 << timestamp_bits));
|
|
let address_timestamp_combined: Vec<_> = output_targets
|
|
.iter()
|
|
.map(|op| self.mul_add(op.address, two_n, op.timestamp))
|
|
.collect();
|
|
|
|
for i in 1..n {
|
|
self.assert_le(
|
|
address_timestamp_combined[i - 1],
|
|
address_timestamp_combined[i],
|
|
combined_bits,
|
|
num_chunks,
|
|
);
|
|
}
|
|
|
|
self.assert_permutation_memory_ops(ops, &output_targets);
|
|
|
|
self.add_simple_generator(MemoryOpSortGenerator::<F, D> {
|
|
input_ops: ops.to_vec(),
|
|
output_ops: output_targets.clone(),
|
|
_phantom: PhantomData,
|
|
});
|
|
|
|
output_targets
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct MemoryOpSortGenerator<F: RichField + Extendable<D>, const D: usize> {
|
|
input_ops: Vec<MemoryOpTarget>,
|
|
output_ops: Vec<MemoryOpTarget>,
|
|
_phantom: PhantomData<F>,
|
|
}
|
|
|
|
impl<F: RichField + Extendable<D>, const D: usize> SimpleGenerator<F>
|
|
for MemoryOpSortGenerator<F, D>
|
|
{
|
|
fn dependencies(&self) -> Vec<Target> {
|
|
self.input_ops
|
|
.iter()
|
|
.flat_map(|op| vec![op.is_write.target, op.address, op.timestamp, op.value])
|
|
.collect()
|
|
}
|
|
|
|
fn run_once(&self, witness: &PartitionWitness<F>, out_buffer: &mut GeneratedValues<F>) {
|
|
let n = self.input_ops.len();
|
|
debug_assert!(self.output_ops.len() == n);
|
|
|
|
let mut ops: Vec<_> = self
|
|
.input_ops
|
|
.iter()
|
|
.map(|op| {
|
|
let is_write = witness.get_bool_target(op.is_write);
|
|
let address = witness.get_target(op.address);
|
|
let timestamp = witness.get_target(op.timestamp);
|
|
let value = witness.get_target(op.value);
|
|
MemoryOp {
|
|
is_write,
|
|
address,
|
|
timestamp,
|
|
value,
|
|
}
|
|
})
|
|
.collect();
|
|
|
|
ops.sort_unstable_by_key(|op| {
|
|
(
|
|
op.address.to_canonical_u64(),
|
|
op.timestamp.to_canonical_u64(),
|
|
)
|
|
});
|
|
|
|
for (op, out_op) in ops.iter().zip(&self.output_ops) {
|
|
out_buffer.set_target(out_op.is_write.target, F::from_bool(op.is_write));
|
|
out_buffer.set_target(out_op.address, op.address);
|
|
out_buffer.set_target(out_op.timestamp, op.timestamp);
|
|
out_buffer.set_target(out_op.value, op.value);
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use anyhow::Result;
|
|
use rand::{thread_rng, Rng};
|
|
|
|
use super::*;
|
|
use crate::field::field_types::{Field, PrimeField};
|
|
use crate::field::goldilocks_field::GoldilocksField;
|
|
use crate::iop::witness::PartialWitness;
|
|
use crate::plonk::circuit_data::CircuitConfig;
|
|
use crate::plonk::verifier::verify;
|
|
|
|
fn test_sorting(size: usize, address_bits: usize, timestamp_bits: usize) -> Result<()> {
|
|
type F = GoldilocksField;
|
|
const D: usize = 4;
|
|
|
|
let config = CircuitConfig::standard_recursion_config();
|
|
|
|
let mut pw = PartialWitness::new();
|
|
let mut builder = CircuitBuilder::<F, D>::new(config);
|
|
|
|
let mut rng = thread_rng();
|
|
let is_write_vals: Vec<_> = (0..size).map(|_| rng.gen_range(0..2) != 0).collect();
|
|
let address_vals: Vec<_> = (0..size)
|
|
.map(|_| F::from_canonical_u64(rng.gen_range(0..1 << address_bits as u64)))
|
|
.collect();
|
|
let timestamp_vals: Vec<_> = (0..size)
|
|
.map(|_| F::from_canonical_u64(rng.gen_range(0..1 << timestamp_bits as u64)))
|
|
.collect();
|
|
let value_vals: Vec<_> = (0..size).map(|_| F::rand()).collect();
|
|
|
|
let input_ops: Vec<MemoryOpTarget> = izip!(
|
|
is_write_vals.clone(),
|
|
address_vals.clone(),
|
|
timestamp_vals.clone(),
|
|
value_vals.clone()
|
|
)
|
|
.map(|(is_write, address, timestamp, value)| MemoryOpTarget {
|
|
is_write: builder.constant_bool(is_write),
|
|
address: builder.constant(address),
|
|
timestamp: builder.constant(timestamp),
|
|
value: builder.constant(value),
|
|
})
|
|
.collect();
|
|
|
|
let combined_vals_u64: Vec<_> = timestamp_vals
|
|
.iter()
|
|
.zip(&address_vals)
|
|
.map(|(&t, &a)| (a.to_canonical_u64() << timestamp_bits as u64) + t.to_canonical_u64())
|
|
.collect();
|
|
let mut input_ops_and_keys: Vec<_> =
|
|
izip!(is_write_vals, address_vals, timestamp_vals, value_vals)
|
|
.zip(combined_vals_u64)
|
|
.collect::<Vec<_>>();
|
|
input_ops_and_keys.sort_by_key(|(_, val)| *val);
|
|
let input_ops_sorted: Vec<_> = input_ops_and_keys.iter().map(|(x, _)| x).collect();
|
|
|
|
let output_ops =
|
|
builder.sort_memory_ops(input_ops.as_slice(), address_bits, timestamp_bits);
|
|
|
|
for i in 0..size {
|
|
pw.set_bool_target(output_ops[i].is_write, input_ops_sorted[i].0);
|
|
pw.set_target(output_ops[i].address, input_ops_sorted[i].1);
|
|
pw.set_target(output_ops[i].timestamp, input_ops_sorted[i].2);
|
|
pw.set_target(output_ops[i].value, input_ops_sorted[i].3);
|
|
}
|
|
|
|
let data = builder.build();
|
|
let proof = data.prove(pw).unwrap();
|
|
|
|
verify(proof, &data.verifier_only, &data.common)
|
|
}
|
|
|
|
#[test]
|
|
fn test_sorting_small() -> Result<()> {
|
|
let size = 5;
|
|
let address_bits = 20;
|
|
let timestamp_bits = 20;
|
|
|
|
test_sorting(size, address_bits, timestamp_bits)
|
|
}
|
|
|
|
#[test]
|
|
fn test_sorting_large() -> Result<()> {
|
|
let size = 20;
|
|
let address_bits = 20;
|
|
let timestamp_bits = 20;
|
|
|
|
test_sorting(size, address_bits, timestamp_bits)
|
|
}
|
|
}
|