plonky2/src/gates/comparison.rs
2021-09-15 17:55:15 -07:00

615 lines
23 KiB
Rust

use std::marker::PhantomData;
use crate::field::extension_field::target::ExtensionTarget;
use crate::field::extension_field::Extendable;
use crate::field::field_types::{Field, PrimeField, RichField};
use crate::gates::gate::Gate;
use crate::iop::generator::{GeneratedValues, SimpleGenerator, WitnessGenerator};
use crate::iop::target::Target;
use crate::iop::wire::Wire;
use crate::iop::witness::{PartitionWitness, Witness};
use crate::plonk::circuit_builder::CircuitBuilder;
use crate::plonk::plonk_common::{reduce_with_powers, reduce_with_powers_ext_recursive};
use crate::plonk::vars::{EvaluationTargets, EvaluationVars, EvaluationVarsBase};
use crate::util::ceil_div_usize;
/// A gate for checking that one value is smaller than another.
#[derive(Clone, Debug)]
pub(crate) struct ComparisonGate<F: PrimeField + Extendable<D>, const D: usize> {
pub(crate) num_bits: usize,
pub(crate) num_chunks: usize,
_phantom: PhantomData<F>,
}
impl<F: RichField + Extendable<D>, const D: usize> ComparisonGate<F, D> {
pub fn new(num_bits: usize, num_chunks: usize) -> Self {
Self {
num_bits,
num_chunks,
_phantom: PhantomData,
}
}
pub fn chunk_bits(&self) -> usize {
ceil_div_usize(self.num_bits, self.num_chunks)
}
pub fn wire_first_input(&self) -> usize {
0
}
pub fn wire_second_input(&self) -> usize {
1
}
pub fn wire_z_val(&self) -> usize {
2
}
pub fn wire_z_bit(&self, bit_index: usize) -> usize {
debug_assert!(bit_index < self.chunk_bits() + 1);
3 + bit_index
}
pub fn wire_first_chunk_val(&self, chunk: usize) -> usize {
debug_assert!(chunk < self.num_chunks);
4 + self.chunk_bits() + chunk
}
pub fn wire_second_chunk_val(&self, chunk: usize) -> usize {
debug_assert!(chunk < self.num_chunks);
4 + self.chunk_bits() + self.num_chunks + chunk
}
pub fn wire_equality_dummy(&self, chunk: usize) -> usize {
debug_assert!(chunk < self.num_chunks);
4 + self.chunk_bits() + 2 * self.num_chunks + chunk
}
pub fn wire_chunks_equal(&self, chunk: usize) -> usize {
debug_assert!(chunk < self.num_chunks);
4 + self.chunk_bits() + 3 * self.num_chunks + chunk
}
}
impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for ComparisonGate<F, D> {
fn id(&self) -> String {
format!("{:?}<D={}>", self, D)
}
fn eval_unfiltered(&self, vars: EvaluationVars<F, D>) -> Vec<F::Extension> {
let mut constraints = Vec::with_capacity(self.num_constraints());
let first_input = vars.local_wires[self.wire_first_input()];
let second_input = vars.local_wires[self.wire_second_input()];
// Get chunks and assert that they match
let first_chunks: Vec<F::Extension> = (0..self.num_chunks)
.map(|i| vars.local_wires[self.wire_first_chunk_val(i)])
.collect();
let second_chunks: Vec<F::Extension> = (0..self.num_chunks)
.map(|i| vars.local_wires[self.wire_second_chunk_val(i)])
.collect();
let first_chunks_combined = reduce_with_powers(
&first_chunks,
F::Extension::from_canonical_usize(1 << self.chunk_bits()),
);
let second_chunks_combined = reduce_with_powers(
&second_chunks,
F::Extension::from_canonical_usize(1 << self.chunk_bits()),
);
constraints.push(first_chunks_combined - first_input);
constraints.push(second_chunks_combined - second_input);
let mut most_significant_diff = F::Extension::ZERO;
// Find the chosen chunk.
for i in 0..self.num_chunks {
let max_chunk_size = 1 << self.chunk_bits();
let mut first_product = F::Extension::ONE;
let mut second_product = F::Extension::ONE;
for x in 1..max_chunk_size {
let x_F = F::Extension::from_canonical_usize(x);
first_product = first_product * (first_chunks[i] - x_F);
second_product = second_product * (second_chunks[i] - x_F);
}
constraints.push(first_product);
constraints.push(second_product);
let difference = first_chunks[i] - second_chunks[i];
let equality_dummy = vars.local_wires[self.wire_equality_dummy(i)];
let chunks_equal = vars.local_wires[self.wire_chunks_equal(i)];
// Two constraints identifying index.
constraints.push(difference * equality_dummy - (F::Extension::ONE - chunks_equal));
constraints.push(chunks_equal * difference);
let this_diff = first_chunks[i] - second_chunks[i];
most_significant_diff = chunks_equal * most_significant_diff
+ (F::Extension::ONE - chunks_equal) * this_diff;
}
let z_bits: Vec<F::Extension> = (0..self.chunk_bits() + 1)
.map(|i| vars.local_wires[self.wire_z_bit(i)])
.collect();
let z_bits_combined = reduce_with_powers(&z_bits, F::Extension::TWO);
let two_n = F::Extension::TWO.exp_u64(self.chunk_bits() as u64);
constraints.push(z_bits_combined - (two_n + most_significant_diff));
constraints.push(z_bits[self.chunk_bits()]);
constraints
}
fn eval_unfiltered_base(&self, vars: EvaluationVarsBase<F>) -> Vec<F> {
let mut constraints = Vec::with_capacity(self.num_constraints());
let first_input = vars.local_wires[self.wire_first_input()];
let second_input = vars.local_wires[self.wire_second_input()];
// Get chunks and assert that they match
let first_chunks: Vec<F> = (0..self.num_chunks)
.map(|i| vars.local_wires[self.wire_first_chunk_val(i)])
.collect();
let second_chunks: Vec<F> = (0..self.num_chunks)
.map(|i| vars.local_wires[self.wire_second_chunk_val(i)])
.collect();
let first_chunks_combined = reduce_with_powers(
&first_chunks,
F::from_canonical_usize(1 << self.chunk_bits()),
);
let second_chunks_combined = reduce_with_powers(
&second_chunks,
F::from_canonical_usize(1 << self.chunk_bits()),
);
constraints.push(first_chunks_combined - first_input);
constraints.push(second_chunks_combined - second_input);
let mut most_significant_diff = F::ZERO;
// Find the chosen chunk.
for i in 0..self.num_chunks {
let max_chunk_size = 1 << self.chunk_bits();
let mut first_product = F::ONE;
let mut second_product = F::ONE;
for x in 1..max_chunk_size {
let x_F = F::from_canonical_usize(x);
first_product = first_product * (first_chunks[i] - x_F);
second_product = second_product * (second_chunks[i] - x_F);
}
constraints.push(first_product);
constraints.push(second_product);
let difference = first_chunks[i] - second_chunks[i];
let equality_dummy = vars.local_wires[self.wire_equality_dummy(i)];
let chunks_equal = vars.local_wires[self.wire_chunks_equal(i)];
// Two constraints identifying index.
constraints.push(difference * equality_dummy - (F::ONE - chunks_equal));
constraints.push(chunks_equal * difference);
let this_diff = first_chunks[i] - second_chunks[i];
most_significant_diff =
chunks_equal * most_significant_diff + (F::ONE - chunks_equal) * this_diff;
}
let z_bits: Vec<F> = (0..self.chunk_bits() + 1)
.map(|i| vars.local_wires[self.wire_z_bit(i)])
.collect();
let z_bits_combined = reduce_with_powers(&z_bits, F::TWO);
let two_n = F::TWO.exp_u64(self.chunk_bits() as u64);
constraints.push(z_bits_combined - (two_n + most_significant_diff));
constraints.push(z_bits[self.chunk_bits()]);
constraints
}
fn eval_unfiltered_recursively(
&self,
builder: &mut CircuitBuilder<F, D>,
vars: EvaluationTargets<D>,
) -> Vec<ExtensionTarget<D>> {
let mut constraints = Vec::with_capacity(self.num_constraints());
let first_input = vars.local_wires[self.wire_first_input()];
let second_input = vars.local_wires[self.wire_second_input()];
// Get chunks and assert that they match
let first_chunks: Vec<ExtensionTarget<D>> = (0..self.num_chunks)
.map(|i| vars.local_wires[self.wire_first_chunk_val(i)])
.collect();
let second_chunks: Vec<ExtensionTarget<D>> = (0..self.num_chunks)
.map(|i| vars.local_wires[self.wire_second_chunk_val(i)])
.collect();
let chunk_base = builder.constant(F::from_canonical_usize(1 << self.chunk_bits()));
let first_chunks_combined =
reduce_with_powers_ext_recursive(builder, &first_chunks, chunk_base);
let second_chunks_combined =
reduce_with_powers_ext_recursive(builder, &second_chunks, chunk_base);
constraints.push(builder.sub_extension(first_chunks_combined, first_input));
constraints.push(builder.sub_extension(second_chunks_combined, second_input));
let mut most_significant_diff = builder.zero_extension();
let one = builder.one_extension();
// Find the chosen chunk.
for i in 0..self.num_chunks {
let max_chunk_size = 1 << self.chunk_bits();
let mut first_product = one;
let mut second_product = one;
for x in 1..max_chunk_size {
let x_F = builder.constant_extension(F::Extension::from_canonical_usize(x));
let first_diff = builder.sub_extension(first_chunks[i], x_F);
let second_diff = builder.sub_extension(second_chunks[i], x_F);
first_product = builder.mul_extension(first_product, first_diff);
second_product = builder.mul_extension(second_product, second_diff);
}
constraints.push(first_product);
constraints.push(second_product);
let difference = builder.sub_extension(first_chunks[i], second_chunks[i]);
let equality_dummy = vars.local_wires[self.wire_equality_dummy(i)];
let chunks_equal = vars.local_wires[self.wire_chunks_equal(i)];
// Two constraints identifying index.
let diff_times_equal = builder.mul_extension(difference, equality_dummy);
let not_equal = builder.sub_extension(one, chunks_equal);
constraints.push(builder.sub_extension(diff_times_equal, not_equal));
constraints.push(builder.mul_extension(chunks_equal, difference));
let this_diff = builder.sub_extension(first_chunks[i], second_chunks[i]);
let old_diff = builder.mul_extension(chunks_equal, most_significant_diff);
let not_equal = builder.sub_extension(one, chunks_equal);
let new_diff = builder.mul_extension(not_equal, this_diff);
most_significant_diff = builder.add_extension(old_diff, new_diff);
}
let two = builder.constant(F::TWO);
let z_bits: Vec<ExtensionTarget<D>> = (0..self.chunk_bits() + 1)
.map(|i| vars.local_wires[self.wire_z_bit(i)])
.collect();
let z_bits_combined = reduce_with_powers_ext_recursive(builder, &z_bits, two);
let two_n = builder.constant_extension(F::Extension::TWO.exp_u64(self.chunk_bits() as u64));
let expected_z = builder.add_extension(two_n, most_significant_diff);
let z_diff = builder.sub_extension(z_bits_combined, expected_z);
constraints.push(z_diff);
constraints.push(z_bits[self.chunk_bits()]);
constraints
}
fn generators(
&self,
gate_index: usize,
_local_constants: &[F],
) -> Vec<Box<dyn WitnessGenerator<F>>> {
let gen = ComparisonGenerator::<F, D> {
gate_index,
gate: self.clone(),
};
vec![Box::new(gen.adapter())]
}
fn num_wires(&self) -> usize {
self.wire_chunks_equal(self.num_chunks - 1) + 1
}
fn num_constants(&self) -> usize {
0
}
fn degree(&self) -> usize {
(self.num_chunks + 1).max(1 << self.chunk_bits())
}
fn num_constraints(&self) -> usize {
4 + 4 * self.num_chunks
}
}
#[derive(Debug)]
struct ComparisonGenerator<F: RichField + Extendable<D>, const D: usize> {
gate_index: usize,
gate: ComparisonGate<F, D>,
}
impl<F: RichField + Extendable<D>, const D: usize> SimpleGenerator<F>
for ComparisonGenerator<F, D>
{
fn dependencies(&self) -> Vec<Target> {
let local_target = |input| Target::wire(self.gate_index, input);
let mut deps = Vec::new();
deps.push(local_target(self.gate.wire_first_input()));
deps.push(local_target(self.gate.wire_second_input()));
deps
}
fn run_once(&self, witness: &PartitionWitness<F>, out_buffer: &mut GeneratedValues<F>) {
let local_wire = |input| Wire {
gate: self.gate_index,
input,
};
let get_local_wire = |input| witness.get_wire(local_wire(input));
let first_input = get_local_wire(self.gate.wire_first_input());
let second_input = get_local_wire(self.gate.wire_second_input());
let first_input_u64 = first_input.to_canonical_u64();
let second_input_u64 = second_input.to_canonical_u64();
debug_assert!(first_input_u64 < second_input_u64);
let first_input_bits: Vec<F> = (0..self.gate.num_bits)
.scan(first_input_u64, |acc, _| {
let tmp = *acc % 2;
*acc /= 2;
Some(F::from_canonical_u64(tmp))
})
.collect();
let second_input_bits: Vec<F> = (0..self.gate.num_bits)
.scan(second_input_u64, |acc, _| {
let tmp = *acc % 2;
*acc /= 2;
Some(F::from_canonical_u64(tmp))
})
.collect();
let first_input_chunks: Vec<F> = first_input_bits
.chunks(self.gate.chunk_bits())
.map(|bits| reduce_with_powers(&bits, F::TWO))
.collect();
let second_input_chunks: Vec<F> = second_input_bits
.chunks(self.gate.chunk_bits())
.map(|bits| reduce_with_powers(&bits, F::TWO))
.collect();
let chunks_equal: Vec<F> = (0..self.gate.num_chunks)
.map(|i| F::from_bool(first_input_chunks[i] == second_input_chunks[i]))
.collect();
let equality_dummies: Vec<F> = first_input_chunks
.iter()
.zip(second_input_chunks.iter())
.map(|(f, s)| if *f == *s { F::ONE } else { F::ONE / (*f - *s) })
.collect();
let mut diff_index = 0;
for i in 1..self.gate.num_chunks {
if first_input_chunks[i] != second_input_chunks[i] {
diff_index = i;
}
}
let most_significant_diff =
first_input_chunks[diff_index] - second_input_chunks[diff_index];
let z = F::TWO.exp_u64(self.gate.chunk_bits() as u64) + most_significant_diff;
let z_bits: Vec<F> = (0..self.gate.chunk_bits() + 1)
.scan(z.to_canonical_u64(), |acc, _| {
let tmp = *acc % 2;
*acc /= 2;
Some(F::from_canonical_u64(tmp))
})
.collect();
out_buffer.set_wire(local_wire(self.gate.wire_z_val()), z);
for b in 0..self.gate.chunk_bits() + 1 {
out_buffer.set_wire(local_wire(self.gate.wire_z_bit(b)), z_bits[b]);
}
for i in 0..self.gate.num_chunks {
out_buffer.set_wire(
local_wire(self.gate.wire_first_chunk_val(i)),
first_input_chunks[i],
);
out_buffer.set_wire(
local_wire(self.gate.wire_second_chunk_val(i)),
second_input_chunks[i],
);
out_buffer.set_wire(local_wire(self.gate.wire_chunks_equal(i)), chunks_equal[i]);
out_buffer.set_wire(
local_wire(self.gate.wire_equality_dummy(i)),
equality_dummies[i],
);
}
}
}
#[cfg(test)]
mod tests {
use std::marker::PhantomData;
use anyhow::Result;
use rand::Rng;
use crate::field::crandall_field::CrandallField;
use crate::field::extension_field::quartic::QuarticExtension;
use crate::field::field_types::{Field, PrimeField};
use crate::gates::comparison::ComparisonGate;
use crate::gates::gate::Gate;
use crate::gates::gate_testing::{test_eval_fns, test_low_degree};
use crate::hash::hash_types::HashOut;
use crate::plonk::plonk_common::reduce_with_powers;
use crate::plonk::vars::EvaluationVars;
#[test]
fn wire_indices() {
type CG = ComparisonGate<CrandallField, 4>;
let num_bits = 40;
let num_chunks = 5;
let gate = CG {
num_bits,
num_chunks,
_phantom: PhantomData,
};
assert_eq!(gate.wire_first_input(), 0);
assert_eq!(gate.wire_second_input(), 1);
assert_eq!(gate.wire_z_val(), 2);
assert_eq!(gate.wire_z_bit(0), 3);
assert_eq!(gate.wire_z_bit(8), 11);
assert_eq!(gate.wire_first_chunk_val(0), 12);
assert_eq!(gate.wire_first_chunk_val(4), 16);
assert_eq!(gate.wire_second_chunk_val(0), 17);
assert_eq!(gate.wire_second_chunk_val(4), 21);
assert_eq!(gate.wire_equality_dummy(0), 22);
assert_eq!(gate.wire_equality_dummy(4), 26);
assert_eq!(gate.wire_chunks_equal(0), 27);
assert_eq!(gate.wire_chunks_equal(4), 31);
}
#[test]
fn low_degree() {
let num_bits = 40;
let num_chunks = 5;
test_low_degree::<CrandallField, _, 4>(ComparisonGate::<_, 4>::new(num_bits, num_chunks))
}
#[test]
fn eval_fns() -> Result<()> {
let num_bits = 40;
let num_chunks = 5;
test_eval_fns::<CrandallField, _, 4>(ComparisonGate::<_, 4>::new(num_bits, num_chunks))
}
#[test]
fn test_gate_constraint() {
type F = CrandallField;
type FF = QuarticExtension<CrandallField>;
const D: usize = 4;
let num_copies = 3;
let num_bits = 40;
let num_chunks = 5;
let chunk_bits = num_bits / num_chunks;
// Returns the local wires for a comparison gate given the two inputs.
let get_wires = |first_inputs: Vec<F>, second_inputs: Vec<F>| -> Vec<FF> {
let num_copies = first_inputs.len();
let mut v = Vec::new();
for c in 0..num_copies {
let first_input = first_inputs[c];
let second_input = second_inputs[c];
let first_input_u64 = first_input.to_canonical_u64();
let second_input_u64 = second_input.to_canonical_u64();
let first_input_bits: Vec<F> = (0..num_bits)
.scan(first_input_u64, |acc, _| {
let tmp = *acc % 2;
*acc /= 2;
Some(F::from_canonical_u64(tmp))
})
.collect();
let second_input_bits: Vec<F> = (0..num_bits)
.scan(second_input_u64, |acc, _| {
let tmp = *acc % 2;
*acc /= 2;
Some(F::from_canonical_u64(tmp))
})
.collect();
let mut first_input_chunks: Vec<F> = first_input_bits
.chunks(chunk_bits)
.map(|bits| reduce_with_powers(&bits, F::TWO))
.collect();
let mut second_input_chunks: Vec<F> = second_input_bits
.chunks(chunk_bits)
.map(|bits| reduce_with_powers(&bits, F::TWO))
.collect();
let mut chunks_equal: Vec<F> = (0..num_chunks)
.map(|i| F::from_bool(first_input_chunks[i] == second_input_chunks[i]))
.collect();
let mut equality_dummies: Vec<F> = first_input_chunks
.iter()
.zip(second_input_chunks.iter())
.map(|(&f, &s)| if f == s { F::ONE } else { F::ONE / (f - s) })
.collect();
let mut diff_index = 0;
for i in 1..num_chunks {
if first_input_chunks[i] != second_input_chunks[i] {
diff_index = i;
}
}
let most_significant_diff =
first_input_chunks[diff_index] - second_input_chunks[diff_index];
let z = F::TWO.exp_u64(chunk_bits as u64) + most_significant_diff;
let mut z_bits: Vec<F> = (0..chunk_bits + 1)
.scan(z.to_canonical_u64(), |acc, _| {
let tmp = *acc % 2;
*acc /= 2;
Some(F::from_canonical_u64(tmp))
})
.collect();
v.push(first_input);
v.push(second_input);
v.push(z);
v.append(&mut z_bits);
v.append(&mut first_input_chunks);
v.append(&mut second_input_chunks);
v.append(&mut equality_dummies);
v.append(&mut chunks_equal);
}
v.iter().map(|&x| x.into()).collect::<Vec<_>>()
};
let mut rng = rand::thread_rng();
let max: u64 = 1 << num_bits - 1;
let first_inputs_u64: Vec<u64> = (0..num_copies).map(|_| rng.gen_range(0..max)).collect();
let second_inputs_u64: Vec<u64> = (0..num_copies)
.map(|i| {
let mut val = rng.gen_range(0..max);
while val <= first_inputs_u64[i] {
val = rng.gen_range(0..max);
}
val
})
.collect();
let first_inputs = first_inputs_u64
.iter()
.map(|&x| F::from_canonical_u64(x))
.collect();
let second_inputs = second_inputs_u64
.iter()
.map(|&x| F::from_canonical_u64(x))
.collect();
let gate = ComparisonGate::<F, D> {
num_bits,
num_chunks,
_phantom: PhantomData,
};
let vars = EvaluationVars {
local_constants: &[],
local_wires: &get_wires(first_inputs, second_inputs),
public_inputs_hash: &HashOut::rand(),
};
assert!(
gate.eval_unfiltered(vars).iter().all(|x| x.is_zero()),
"Gate constraints are not satisfied."
);
}
}