mirror of
https://github.com/logos-storage/plonky2.git
synced 2026-01-07 08:13:11 +00:00
- Configure FRI with a list of arities that's more appropriate for a 2^14 instance. The previous config resulted in a huge final polynomial. - Log the blinding factors, and other logging tweaks.
495 lines
18 KiB
Rust
495 lines
18 KiB
Rust
use std::collections::{HashMap, HashSet};
|
|
use std::time::Instant;
|
|
|
|
use log::info;
|
|
|
|
use crate::circuit_data::{
|
|
CircuitConfig, CircuitData, CommonCircuitData, ProverCircuitData, ProverOnlyCircuitData,
|
|
VerifierCircuitData, VerifierOnlyCircuitData,
|
|
};
|
|
use crate::field::cosets::get_unique_coset_shifts;
|
|
use crate::field::extension_field::target::ExtensionTarget;
|
|
use crate::field::extension_field::Extendable;
|
|
use crate::gates::constant::ConstantGate;
|
|
use crate::gates::gate::{GateInstance, GateRef, PrefixedGate};
|
|
use crate::gates::gate_tree::Tree;
|
|
use crate::gates::noop::NoopGate;
|
|
use crate::generator::{CopyGenerator, RandomValueGenerator, WitnessGenerator};
|
|
use crate::hash::hash_n_to_hash;
|
|
use crate::permutation_argument::TargetPartitions;
|
|
use crate::plonk_common::PlonkPolynomials;
|
|
use crate::polynomial::commitment::ListPolynomialCommitment;
|
|
use crate::polynomial::polynomial::PolynomialValues;
|
|
use crate::target::Target;
|
|
use crate::util::{log2_ceil, log2_strict, transpose, transpose_poly_values};
|
|
use crate::wire::Wire;
|
|
|
|
pub struct CircuitBuilder<F: Extendable<D>, const D: usize> {
|
|
pub(crate) config: CircuitConfig,
|
|
|
|
/// The types of gates used in this circuit.
|
|
gates: HashSet<GateRef<F, D>>,
|
|
|
|
/// The concrete placement of each gate.
|
|
gate_instances: Vec<GateInstance<F, D>>,
|
|
|
|
/// The next available index for a public input.
|
|
public_input_index: usize,
|
|
|
|
/// The next available index for a `VirtualTarget`.
|
|
virtual_target_index: usize,
|
|
|
|
copy_constraints: Vec<(Target, Target)>,
|
|
|
|
/// Generators used to generate the witness.
|
|
generators: Vec<Box<dyn WitnessGenerator<F>>>,
|
|
|
|
constants_to_targets: HashMap<F, Target>,
|
|
targets_to_constants: HashMap<Target, F>,
|
|
}
|
|
|
|
impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
|
|
pub fn new(config: CircuitConfig) -> Self {
|
|
CircuitBuilder {
|
|
config,
|
|
gates: HashSet::new(),
|
|
gate_instances: Vec::new(),
|
|
public_input_index: 0,
|
|
virtual_target_index: 0,
|
|
copy_constraints: Vec::new(),
|
|
generators: Vec::new(),
|
|
constants_to_targets: HashMap::new(),
|
|
targets_to_constants: HashMap::new(),
|
|
}
|
|
}
|
|
|
|
pub fn num_gates(&self) -> usize {
|
|
self.gate_instances.len()
|
|
}
|
|
|
|
pub fn add_public_input(&mut self) -> Target {
|
|
let index = self.public_input_index;
|
|
self.public_input_index += 1;
|
|
Target::PublicInput { index }
|
|
}
|
|
|
|
pub fn add_public_inputs(&mut self, n: usize) -> Vec<Target> {
|
|
(0..n).map(|_i| self.add_public_input()).collect()
|
|
}
|
|
|
|
/// Adds a new "virtual" target. This is not an actual wire in the witness, but just a target
|
|
/// that help facilitate witness generation. In particular, a generator can assign a values to a
|
|
/// virtual target, which can then be copied to other (virtual or concrete) targets. When we
|
|
/// generate the final witness (a grid of wire values), these virtual targets will go away.
|
|
pub fn add_virtual_target(&mut self) -> Target {
|
|
let index = self.virtual_target_index;
|
|
self.virtual_target_index += 1;
|
|
Target::VirtualTarget { index }
|
|
}
|
|
|
|
pub fn add_virtual_targets(&mut self, n: usize) -> Vec<Target> {
|
|
(0..n).map(|_i| self.add_virtual_target()).collect()
|
|
}
|
|
|
|
pub fn add_gate_no_constants(&mut self, gate_type: GateRef<F, D>) -> usize {
|
|
self.add_gate(gate_type, Vec::new())
|
|
}
|
|
|
|
/// Adds a gate to the circuit, and returns its index.
|
|
pub fn add_gate(&mut self, gate_type: GateRef<F, D>, constants: Vec<F>) -> usize {
|
|
assert_eq!(
|
|
gate_type.0.num_constants(),
|
|
constants.len(),
|
|
"Number of constants doesn't match."
|
|
);
|
|
// If we haven't seen a gate of this type before, check that it's compatible with our
|
|
// circuit configuration, then register it.
|
|
if !self.gates.contains(&gate_type) {
|
|
self.check_gate_compatibility(&gate_type);
|
|
self.gates.insert(gate_type.clone());
|
|
}
|
|
|
|
let index = self.gate_instances.len();
|
|
|
|
self.add_generators(gate_type.0.generators(index, &constants));
|
|
|
|
self.gate_instances.push(GateInstance {
|
|
gate_type,
|
|
constants,
|
|
});
|
|
index
|
|
}
|
|
|
|
fn check_gate_compatibility(&self, gate: &GateRef<F, D>) {
|
|
assert!(
|
|
gate.0.num_wires() <= self.config.num_wires,
|
|
"{:?} requires {} wires, but our GateConfig has only {}",
|
|
gate.0.id(),
|
|
gate.0.num_wires(),
|
|
self.config.num_wires
|
|
);
|
|
}
|
|
|
|
/// Shorthand for `generate_copy` and `assert_equal`.
|
|
/// Both elements must be routable, otherwise this method will panic.
|
|
pub fn route(&mut self, src: Target, dst: Target) {
|
|
self.generate_copy(src, dst);
|
|
self.assert_equal(src, dst);
|
|
}
|
|
|
|
pub fn route_extension(&mut self, src: ExtensionTarget<D>, dst: ExtensionTarget<D>) {
|
|
for i in 0..D {
|
|
self.route(src.0[i], dst.0[i]);
|
|
}
|
|
}
|
|
|
|
/// Adds a generator which will copy `src` to `dst`.
|
|
pub fn generate_copy(&mut self, src: Target, dst: Target) {
|
|
self.add_generator(CopyGenerator { src, dst });
|
|
}
|
|
|
|
/// Uses Plonk's permutation argument to require that two elements be equal.
|
|
/// Both elements must be routable, otherwise this method will panic.
|
|
pub fn assert_equal(&mut self, x: Target, y: Target) {
|
|
assert!(
|
|
x.is_routable(&self.config),
|
|
"Tried to route a wire that isn't routable"
|
|
);
|
|
assert!(
|
|
y.is_routable(&self.config),
|
|
"Tried to route a wire that isn't routable"
|
|
);
|
|
self.copy_constraints.push((x, y));
|
|
}
|
|
|
|
pub fn assert_zero(&mut self, x: Target) {
|
|
let zero = self.zero();
|
|
self.assert_equal(x, zero);
|
|
}
|
|
|
|
pub fn assert_equal_extension(&mut self, x: ExtensionTarget<D>, y: ExtensionTarget<D>) {
|
|
for i in 0..D {
|
|
self.assert_equal(x.0[i], y.0[i]);
|
|
}
|
|
}
|
|
|
|
pub fn add_generators(&mut self, generators: Vec<Box<dyn WitnessGenerator<F>>>) {
|
|
self.generators.extend(generators);
|
|
}
|
|
|
|
pub fn add_generator<G: WitnessGenerator<F>>(&mut self, generator: G) {
|
|
self.generators.push(Box::new(generator));
|
|
}
|
|
|
|
/// Returns a routable target with a value of 0.
|
|
pub fn zero(&mut self) -> Target {
|
|
self.constant(F::ZERO)
|
|
}
|
|
|
|
/// Returns a routable target with a value of 1.
|
|
pub fn one(&mut self) -> Target {
|
|
self.constant(F::ONE)
|
|
}
|
|
|
|
/// Returns a routable target with a value of 2.
|
|
pub fn two(&mut self) -> Target {
|
|
self.constant(F::TWO)
|
|
}
|
|
|
|
/// Returns a routable target with a value of `ORDER - 1`.
|
|
pub fn neg_one(&mut self) -> Target {
|
|
self.constant(F::NEG_ONE)
|
|
}
|
|
|
|
/// Returns a routable target with the given constant value.
|
|
pub fn constant(&mut self, c: F) -> Target {
|
|
if let Some(&target) = self.constants_to_targets.get(&c) {
|
|
// We already have a wire for this constant.
|
|
return target;
|
|
}
|
|
|
|
let gate = self.add_gate(ConstantGate::get(), vec![c]);
|
|
let target = Target::Wire(Wire {
|
|
gate,
|
|
input: ConstantGate::WIRE_OUTPUT,
|
|
});
|
|
self.constants_to_targets.insert(c, target);
|
|
self.targets_to_constants.insert(target, c);
|
|
target
|
|
}
|
|
|
|
pub fn constants(&mut self, constants: &[F]) -> Vec<Target> {
|
|
constants.iter().map(|&c| self.constant(c)).collect()
|
|
}
|
|
|
|
/// If the given target is a constant (i.e. it was created by the `constant(F)` method), returns
|
|
/// its constant value. Otherwise, returns `None`.
|
|
pub fn target_as_constant(&self, target: Target) -> Option<F> {
|
|
self.targets_to_constants.get(&target).cloned()
|
|
}
|
|
|
|
/// The number of polynomial values that will be revealed per opening, both for the "regular"
|
|
/// polynomials and for the Z polynomials. Because calculating these values involves a recursive
|
|
/// dependence (the amount of blinding depends on the degree, which depends on the blinding),
|
|
/// this function takes in an estimate of the degree.
|
|
fn num_blinding_gates(&self, degree_estimate: usize) -> (usize, usize) {
|
|
let fri_queries = self.config.fri_config.num_query_rounds;
|
|
let arities: Vec<usize> = self
|
|
.config
|
|
.fri_config
|
|
.reduction_arity_bits
|
|
.iter()
|
|
.map(|x| 1 << x)
|
|
.collect();
|
|
let total_fri_folding_points: usize = arities.iter().map(|x| x - 1).sum::<usize>();
|
|
let final_poly_coeffs: usize = degree_estimate / arities.iter().product::<usize>();
|
|
let fri_openings = fri_queries * (1 + D * total_fri_folding_points + D * final_poly_coeffs);
|
|
|
|
let regular_poly_openings = D + fri_openings;
|
|
let z_openings = 2 * D + fri_openings;
|
|
|
|
(regular_poly_openings, z_openings)
|
|
}
|
|
|
|
/// The number of polynomial values that will be revealed per opening, both for the "regular"
|
|
/// polynomials (which are opened at only one location) and for the Z polynomials (which are
|
|
/// opened at two).
|
|
fn blinding_counts(&self) -> (usize, usize) {
|
|
let num_gates = self.gate_instances.len();
|
|
let mut degree_estimate = 1 << log2_ceil(num_gates);
|
|
|
|
loop {
|
|
let (regular_poly_openings, z_openings) = self.num_blinding_gates(degree_estimate);
|
|
|
|
// For most polynomials, we add one random element to offset each opened value.
|
|
// But blinding Z is separate. For that, we add two random elements with a copy
|
|
// constraint between them.
|
|
let total_blinding_count = regular_poly_openings + 2 * z_openings;
|
|
|
|
if num_gates + total_blinding_count <= degree_estimate {
|
|
return (regular_poly_openings, z_openings);
|
|
}
|
|
|
|
// The blinding gates do not fit within our estimated degree; increase our estimate.
|
|
degree_estimate *= 2;
|
|
}
|
|
}
|
|
|
|
fn blind_and_pad(&mut self) {
|
|
let (regular_poly_openings, z_openings) = self.blinding_counts();
|
|
info!(
|
|
"Adding {} blinding terms for witness polynomials, and {}*2 for Z polynomials",
|
|
regular_poly_openings, z_openings
|
|
);
|
|
|
|
let num_routed_wires = self.config.num_routed_wires;
|
|
let num_wires = self.config.num_wires;
|
|
|
|
// For each "regular" blinding factor, we simply add a no-op gate, and insert a random value
|
|
// for each wire.
|
|
for _ in 0..regular_poly_openings {
|
|
let gate = self.add_gate_no_constants(NoopGate::get());
|
|
for w in 0..num_wires {
|
|
self.add_generator(RandomValueGenerator {
|
|
target: Target::Wire(Wire { gate, input: w }),
|
|
});
|
|
}
|
|
}
|
|
|
|
// For each z poly blinding factor, we add two new gates with the same random value, and
|
|
// enforce a copy constraint between them.
|
|
// See https://mirprotocol.org/blog/Adding-zero-knowledge-to-Plonk-Halo
|
|
for _ in 0..z_openings {
|
|
let gate_1 = self.add_gate_no_constants(NoopGate::get());
|
|
let gate_2 = self.add_gate_no_constants(NoopGate::get());
|
|
|
|
for w in 0..num_routed_wires {
|
|
self.add_generator(RandomValueGenerator {
|
|
target: Target::Wire(Wire {
|
|
gate: gate_1,
|
|
input: w,
|
|
}),
|
|
});
|
|
self.add_generator(CopyGenerator {
|
|
src: Target::Wire(Wire {
|
|
gate: gate_1,
|
|
input: w,
|
|
}),
|
|
dst: Target::Wire(Wire {
|
|
gate: gate_2,
|
|
input: w,
|
|
}),
|
|
});
|
|
}
|
|
}
|
|
|
|
while !self.gate_instances.len().is_power_of_two() {
|
|
self.add_gate_no_constants(NoopGate::get());
|
|
}
|
|
}
|
|
|
|
fn constant_polys(
|
|
&self,
|
|
gates: &[PrefixedGate<F, D>],
|
|
num_constants: usize,
|
|
) -> Vec<PolynomialValues<F>> {
|
|
let constants_per_gate = self
|
|
.gate_instances
|
|
.iter()
|
|
.map(|gate| {
|
|
let prefix = &gates
|
|
.iter()
|
|
.find(|g| g.gate.0.id() == gate.gate_type.0.id())
|
|
.unwrap()
|
|
.prefix;
|
|
let mut prefixed_constants = Vec::with_capacity(num_constants);
|
|
prefixed_constants.extend(prefix.iter().map(|&b| if b { F::ONE } else { F::ZERO }));
|
|
prefixed_constants.extend_from_slice(&gate.constants);
|
|
prefixed_constants.resize(num_constants, F::ZERO);
|
|
prefixed_constants
|
|
})
|
|
.collect::<Vec<_>>();
|
|
|
|
transpose(&constants_per_gate)
|
|
.into_iter()
|
|
.map(PolynomialValues::new)
|
|
.collect()
|
|
}
|
|
|
|
fn sigma_vecs(&self, k_is: &[F], subgroup: &[F]) -> Vec<PolynomialValues<F>> {
|
|
let degree = self.gate_instances.len();
|
|
let degree_log = log2_strict(degree);
|
|
let mut target_partitions = TargetPartitions::new();
|
|
|
|
for gate in 0..degree {
|
|
for input in 0..self.config.num_routed_wires {
|
|
target_partitions.add_partition(Target::Wire(Wire { gate, input }));
|
|
}
|
|
}
|
|
|
|
for index in 0..self.public_input_index {
|
|
target_partitions.add_partition(Target::PublicInput { index });
|
|
}
|
|
|
|
for index in 0..self.virtual_target_index {
|
|
target_partitions.add_partition(Target::VirtualTarget { index });
|
|
}
|
|
|
|
for &(a, b) in &self.copy_constraints {
|
|
target_partitions.merge(a, b);
|
|
}
|
|
|
|
let wire_partitions = target_partitions.to_wire_partitions();
|
|
wire_partitions.get_sigma_polys(degree_log, k_is, subgroup)
|
|
}
|
|
|
|
/// Builds a "full circuit", with both prover and verifier data.
|
|
pub fn build(mut self) -> CircuitData<F, D> {
|
|
let start = Instant::now();
|
|
info!(
|
|
"Degree before blinding & padding: {}",
|
|
self.gate_instances.len()
|
|
);
|
|
self.blind_and_pad();
|
|
let degree = self.gate_instances.len();
|
|
info!("Degree after blinding & padding: {}", degree);
|
|
|
|
let gates = self.gates.iter().cloned().collect();
|
|
let (gate_tree, max_filtered_constraint_degree, num_constants) = Tree::from_gates(gates);
|
|
let prefixed_gates = PrefixedGate::from_tree(gate_tree);
|
|
|
|
let degree_bits = log2_strict(degree);
|
|
let subgroup = F::two_adic_subgroup(degree_bits);
|
|
|
|
let constant_vecs = self.constant_polys(&prefixed_gates, num_constants);
|
|
|
|
let k_is = get_unique_coset_shifts(degree, self.config.num_routed_wires);
|
|
let sigma_vecs = self.sigma_vecs(&k_is, &subgroup);
|
|
|
|
let constants_sigmas_vecs = [constant_vecs, sigma_vecs.clone()].concat();
|
|
let constants_sigmas_commitment = ListPolynomialCommitment::new(
|
|
constants_sigmas_vecs,
|
|
self.config.fri_config.rate_bits,
|
|
PlonkPolynomials::CONSTANTS_SIGMAS.blinding,
|
|
);
|
|
|
|
let constants_sigmas_root = constants_sigmas_commitment.merkle_tree.root;
|
|
let verifier_only = VerifierOnlyCircuitData {
|
|
constants_sigmas_root,
|
|
};
|
|
|
|
let prover_only = ProverOnlyCircuitData {
|
|
generators: self.generators,
|
|
constants_sigmas_commitment,
|
|
sigmas: transpose_poly_values(sigma_vecs),
|
|
subgroup,
|
|
copy_constraints: self.copy_constraints,
|
|
gate_instances: self.gate_instances,
|
|
};
|
|
|
|
// The HashSet of gates will have a non-deterministic order. When converting to a Vec, we
|
|
// sort by ID to make the ordering deterministic.
|
|
let mut gates = self.gates.iter().cloned().collect::<Vec<_>>();
|
|
gates.sort_unstable_by_key(|gate| gate.0.id());
|
|
|
|
let num_gate_constraints = gates
|
|
.iter()
|
|
.map(|gate| gate.0.num_constraints())
|
|
.max()
|
|
.expect("No gates?");
|
|
|
|
// TODO: This should also include an encoding of gate constraints.
|
|
let circuit_digest_parts = [
|
|
constants_sigmas_root.elements.to_vec(),
|
|
vec![/* Add other circuit data here */],
|
|
];
|
|
let circuit_digest = hash_n_to_hash(circuit_digest_parts.concat(), false);
|
|
|
|
let common = CommonCircuitData {
|
|
config: self.config,
|
|
degree_bits,
|
|
gates: prefixed_gates,
|
|
max_filtered_constraint_degree,
|
|
num_gate_constraints,
|
|
num_constants,
|
|
k_is,
|
|
circuit_digest,
|
|
};
|
|
|
|
info!("Building circuit took {}s", start.elapsed().as_secs_f32());
|
|
CircuitData {
|
|
prover_only,
|
|
verifier_only,
|
|
common,
|
|
}
|
|
}
|
|
|
|
/// Builds a "prover circuit", with data needed to generate proofs but not verify them.
|
|
pub fn build_prover(self) -> ProverCircuitData<F, D> {
|
|
// TODO: Can skip parts of this.
|
|
let CircuitData {
|
|
prover_only,
|
|
common,
|
|
..
|
|
} = self.build();
|
|
ProverCircuitData {
|
|
prover_only,
|
|
common,
|
|
}
|
|
}
|
|
|
|
/// Builds a "verifier circuit", with data needed to verify proofs but not generate them.
|
|
pub fn build_verifier(self) -> VerifierCircuitData<F, D> {
|
|
// TODO: Can skip parts of this.
|
|
let CircuitData {
|
|
verifier_only,
|
|
common,
|
|
..
|
|
} = self.build();
|
|
VerifierCircuitData {
|
|
verifier_only,
|
|
common,
|
|
}
|
|
}
|
|
}
|