plonky2/starky/src/stark.rs

226 lines
8.0 KiB
Rust

use alloc::vec;
use alloc::vec::Vec;
use plonky2::field::extension::{Extendable, FieldExtension};
use plonky2::field::packed::PackedField;
use plonky2::fri::structure::{
FriBatchInfo, FriBatchInfoTarget, FriInstanceInfo, FriInstanceInfoTarget, FriOracleInfo,
FriPolynomialInfo,
};
use plonky2::hash::hash_types::RichField;
use plonky2::iop::ext_target::ExtensionTarget;
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2::util::ceil_div_usize;
use crate::config::StarkConfig;
use crate::constraint_consumer::{ConstraintConsumer, RecursiveConstraintConsumer};
use crate::evaluation_frame::StarkEvaluationFrame;
use crate::permutation::PermutationPair;
/// Represents a STARK system.
pub trait Stark<F: RichField + Extendable<D>, const D: usize>: Sync {
/// The total number of columns in the trace.
const COLUMNS: usize = Self::EvaluationFrameTarget::COLUMNS;
const PUBLIC_INPUTS: usize = Self::EvaluationFrameTarget::PUBLIC_INPUTS;
/// This is used to evaluate constraints natively.
type EvaluationFrame<FE, P, const D2: usize>: StarkEvaluationFrame<P, FE>
where
FE: FieldExtension<D2, BaseField = F>,
P: PackedField<Scalar = FE>;
/// The `Target` version of `Self::EvaluationFrame`, used to evaluate constraints recursively.
type EvaluationFrameTarget: StarkEvaluationFrame<ExtensionTarget<D>, ExtensionTarget<D>>;
/// Evaluate constraints at a vector of points.
///
/// The points are elements of a field `FE`, a degree `D2` extension of `F`. This lets us
/// evaluate constraints over a larger domain if desired. This can also be called with `FE = F`
/// and `D2 = 1`, in which case we are using the trivial extension, i.e. just evaluating
/// constraints over `F`.
fn eval_packed_generic<FE, P, const D2: usize>(
&self,
vars: &Self::EvaluationFrame<FE, P, D2>,
yield_constr: &mut ConstraintConsumer<P>,
) where
FE: FieldExtension<D2, BaseField = F>,
P: PackedField<Scalar = FE>;
/// Evaluate constraints at a vector of points from the base field `F`.
fn eval_packed_base<P: PackedField<Scalar = F>>(
&self,
vars: &Self::EvaluationFrame<F, P, 1>,
yield_constr: &mut ConstraintConsumer<P>,
) {
self.eval_packed_generic(vars, yield_constr)
}
/// Evaluate constraints at a single point from the degree `D` extension field.
fn eval_ext(
&self,
vars: &Self::EvaluationFrame<F::Extension, F::Extension, D>,
yield_constr: &mut ConstraintConsumer<F::Extension>,
) {
self.eval_packed_generic(vars, yield_constr)
}
/// Evaluate constraints at a vector of points from the degree `D` extension field. This is like
/// `eval_ext`, except in the context of a recursive circuit.
/// Note: constraints must be added through`yeld_constr.constraint(builder, constraint)` in the
/// same order as they are given in `eval_packed_generic`.
fn eval_ext_circuit(
&self,
builder: &mut CircuitBuilder<F, D>,
vars: &Self::EvaluationFrameTarget,
yield_constr: &mut RecursiveConstraintConsumer<F, D>,
);
/// The maximum constraint degree.
fn constraint_degree(&self) -> usize;
/// The maximum constraint degree.
fn quotient_degree_factor(&self) -> usize {
1.max(self.constraint_degree() - 1)
}
fn num_quotient_polys(&self, config: &StarkConfig) -> usize {
self.quotient_degree_factor() * config.num_challenges
}
/// Computes the FRI instance used to prove this Stark.
fn fri_instance(
&self,
zeta: F::Extension,
g: F,
config: &StarkConfig,
) -> FriInstanceInfo<F, D> {
let mut oracles = vec![];
let trace_info = FriPolynomialInfo::from_range(oracles.len(), 0..Self::COLUMNS);
oracles.push(FriOracleInfo {
num_polys: Self::COLUMNS,
blinding: false,
});
let permutation_zs_info = if self.uses_permutation_args() {
let num_z_polys = self.num_permutation_batches(config);
let polys = FriPolynomialInfo::from_range(oracles.len(), 0..num_z_polys);
oracles.push(FriOracleInfo {
num_polys: num_z_polys,
blinding: false,
});
polys
} else {
vec![]
};
let num_quotient_polys = self.quotient_degree_factor() * config.num_challenges;
let quotient_info = FriPolynomialInfo::from_range(oracles.len(), 0..num_quotient_polys);
oracles.push(FriOracleInfo {
num_polys: num_quotient_polys,
blinding: false,
});
let zeta_batch = FriBatchInfo {
point: zeta,
polynomials: [
trace_info.clone(),
permutation_zs_info.clone(),
quotient_info,
]
.concat(),
};
let zeta_next_batch = FriBatchInfo {
point: zeta.scalar_mul(g),
polynomials: [trace_info, permutation_zs_info].concat(),
};
let batches = vec![zeta_batch, zeta_next_batch];
FriInstanceInfo { oracles, batches }
}
/// Computes the FRI instance used to prove this Stark.
fn fri_instance_target(
&self,
builder: &mut CircuitBuilder<F, D>,
zeta: ExtensionTarget<D>,
g: F,
config: &StarkConfig,
) -> FriInstanceInfoTarget<D> {
let mut oracles = vec![];
let trace_info = FriPolynomialInfo::from_range(oracles.len(), 0..Self::COLUMNS);
oracles.push(FriOracleInfo {
num_polys: Self::COLUMNS,
blinding: false,
});
let permutation_zs_info = if self.uses_permutation_args() {
let num_z_polys = self.num_permutation_batches(config);
let polys = FriPolynomialInfo::from_range(oracles.len(), 0..num_z_polys);
oracles.push(FriOracleInfo {
num_polys: num_z_polys,
blinding: false,
});
polys
} else {
vec![]
};
let num_quotient_polys = self.quotient_degree_factor() * config.num_challenges;
let quotient_info = FriPolynomialInfo::from_range(oracles.len(), 0..num_quotient_polys);
oracles.push(FriOracleInfo {
num_polys: num_quotient_polys,
blinding: false,
});
let zeta_batch = FriBatchInfoTarget {
point: zeta,
polynomials: [
trace_info.clone(),
permutation_zs_info.clone(),
quotient_info,
]
.concat(),
};
let zeta_next = builder.mul_const_extension(g, zeta);
let zeta_next_batch = FriBatchInfoTarget {
point: zeta_next,
polynomials: [trace_info, permutation_zs_info].concat(),
};
let batches = vec![zeta_batch, zeta_next_batch];
FriInstanceInfoTarget { oracles, batches }
}
/// Pairs of lists of columns that should be permutations of one another. A permutation argument
/// will be used for each such pair. Empty by default.
fn permutation_pairs(&self) -> Vec<PermutationPair> {
vec![]
}
fn uses_permutation_args(&self) -> bool {
!self.permutation_pairs().is_empty()
}
/// The number of permutation argument instances that can be combined into a single constraint.
fn permutation_batch_size(&self) -> usize {
// The permutation argument constraints look like
// Z(x) \prod(...) = Z(g x) \prod(...)
// where each product has a number of terms equal to the batch size. So our batch size
// should be one less than our constraint degree, which happens to be our quotient degree.
self.quotient_degree_factor()
}
fn num_permutation_instances(&self, config: &StarkConfig) -> usize {
self.permutation_pairs().len() * config.num_challenges
}
fn num_permutation_batches(&self, config: &StarkConfig) -> usize {
ceil_div_usize(
self.num_permutation_instances(config),
self.permutation_batch_size(),
)
}
}