2023-01-20 13:59:39 +07:00

217 lines
6.0 KiB
Rust

use std::str::FromStr;
use anyhow::Result;
use ethereum_types::U256;
use crate::bn254_arithmetic::{fp12_to_vec, frob_fp12, gen_fp12, gen_fp12_sparse, Fp12};
use crate::cpu::kernel::aggregator::KERNEL;
use crate::cpu::kernel::interpreter::{run_interpreter, Interpreter};
use crate::memory::segments::Segment;
use crate::witness::memory::MemoryAddress;
struct InterpreterInit {
offset: String,
stack: Vec<U256>,
memory: Vec<(usize, Vec<U256>)>,
}
fn run_test_interpreter(init: InterpreterInit) -> Result<Vec<U256>> {
let label = KERNEL.global_labels[&init.offset];
let mut stack = init.stack;
stack.reverse();
let mut interpreter = Interpreter::new_with_kernel(label, stack);
for (pointer, data) in init.memory {
for (i, term) in data.iter().enumerate() {
interpreter.generation_state.memory.set(
MemoryAddress::new(0, Segment::KernelGeneral, pointer + i),
*term,
)
}
}
interpreter.run()?;
let mut output = interpreter.stack().to_vec();
output.reverse();
Ok(output)
}
fn get_address_from_label(lbl: &str) -> U256 {
U256::from(KERNEL.global_labels[lbl])
}
fn make_mul_interpreter(f: Fp12, g: Fp12, mul_label: String) -> InterpreterInit {
let in0 = U256::from(64);
let in1 = U256::from(76);
let out = U256::from(88);
let stack = vec![
in0,
in1,
out,
get_address_from_label("return_fp12_on_stack"),
out,
];
let memory = vec![
(64usize, fp12_to_vec(f)),
(76, fp12_to_vec(g))
];
InterpreterInit { offset: mul_label, stack: stack, memory: memory }
// let mut stack = vec![in0];
// stack.extend(fp12_to_vec(f));
// stack.extend(vec![in1]);
// stack.extend(fp12_to_vec(g));
// stack.extend(vec![
// get_address_from_label(mul_label),
// in0,
// in1,
// out,
// get_address_from_label("return_fp12_on_stack"),
// out,
// ]);
// stack
}
#[test]
fn test_mul_fp12() -> Result<()> {
let f: Fp12 = gen_fp12();
let g: Fp12 = gen_fp12();
let h: Fp12 = gen_fp12_sparse();
let normal: InterpreterInit = make_mul_interpreter(f, g, "mul_fp12".to_string());
let sparse: InterpreterInit = make_mul_interpreter(f, h, "mul_fp12_sparse".to_string());
let square: InterpreterInit = make_mul_interpreter(f, f, "square_fp12_test".to_string());
let out_normal: Vec<U256> = run_test_interpreter(normal).unwrap();
let out_sparse: Vec<U256> = run_test_interpreter(sparse).unwrap();
let out_square: Vec<U256> = run_test_interpreter(square).unwrap();
let exp_normal: Vec<U256> = fp12_to_vec(f * g);
let exp_sparse: Vec<U256> = fp12_to_vec(f * h);
let exp_square: Vec<U256> = fp12_to_vec(f * f);
assert_eq!(out_normal, exp_normal);
assert_eq!(out_sparse, exp_sparse);
assert_eq!(out_square, exp_square);
Ok(())
}
// #[test]
// fn test_frob_fp12() -> Result<()> {
// let ptr = U256::from(100);
// let f: Fp12 = gen_fp12();
// let mut stack = vec![ptr];
// stack.extend(fp12_to_vec(f));
// stack.extend(vec![ptr]);
// let out_frob1: Vec<U256> = run_test_interpreter("test_frob_fp12_1", stack.clone());
// let out_frob2: Vec<U256> = run_test_interpreter("test_frob_fp12_2", stack.clone());
// let out_frob3: Vec<U256> = run_test_interpreter("test_frob_fp12_3", stack.clone());
// let out_frob6: Vec<U256> = run_test_interpreter("test_frob_fp12_6", stack);
// let exp_frob1: Vec<U256> = fp12_to_vec(frob_fp12(1, f));
// let exp_frob2: Vec<U256> = fp12_to_vec(frob_fp12(2, f));
// let exp_frob3: Vec<U256> = fp12_to_vec(frob_fp12(3, f));
// let exp_frob6: Vec<U256> = fp12_to_vec(frob_fp12(6, f));
// assert_eq!(out_frob1, exp_frob1);
// assert_eq!(out_frob2, exp_frob2);
// assert_eq!(out_frob3, exp_frob3);
// assert_eq!(out_frob6, exp_frob6);
// Ok(())
// }
// #[test]
// fn test_inv_fp12() -> Result<()> {
// let ptr = U256::from(200);
// let inv = U256::from(300);
// let f: Fp12 = gen_fp12();
// let mut stack = vec![ptr];
// stack.extend(fp12_to_vec(f));
// stack.extend(vec![ptr, inv, U256::from_str("0xdeadbeef").unwrap()]);
// let output: Vec<U256> = run_test_interpreter("test_inv_fp12", stack);
// assert_eq!(output, vec![]);
// Ok(())
// }
// #[test]
// fn test_power() -> Result<()> {
// let ptr = U256::from(300);
// let out = U256::from(400);
// let f: Fp12 = gen_fp12();
// let mut stack = vec![ptr];
// stack.extend(fp12_to_vec(f));
// stack.extend(vec![
// ptr,
// out,
// get_address_from_label("return_fp12_on_stack"),
// out,
// ]);
// let output: Vec<U256> = run_test_interpreter("test_pow", stack);
// let expected: Vec<U256> = fp12_to_vec(power(f));
// assert_eq!(output, expected);
// Ok(())
// }
// fn make_tate_stack(p: Curve, q: TwistedCurve) -> Vec<U256> {
// let ptr = U256::from(300);
// let out = U256::from(400);
// let p_: Vec<U256> = p.into_iter().collect();
// let q_: Vec<U256> = q.into_iter().flatten().collect();
// let mut stack = vec![ptr];
// stack.extend(p_);
// stack.extend(q_);
// stack.extend(vec![
// ptr,
// out,
// get_address_from_label("return_fp12_on_stack"),
// out,
// ]);
// stack
// }
// #[test]
// fn test_miller() -> Result<()> {
// let p: Curve = curve_generator();
// let q: TwistedCurve = twisted_curve_generator();
// let stack = make_tate_stack(p, q);
// let output = run_test_interpreter("test_miller", stack);
// let expected = fp12_to_vec(miller_loop(p, q));
// assert_eq!(output, expected);
// Ok(())
// }
// #[test]
// fn test_tate() -> Result<()> {
// let p: Curve = curve_generator();
// let q: TwistedCurve = twisted_curve_generator();
// let stack = make_tate_stack(p, q);
// let output = run_test_interpreter("test_tate", stack);
// let expected = fp12_to_vec(tate(p, q));
// assert_eq!(output, expected);
// Ok(())
// }