mirror of
https://github.com/logos-storage/plonky2.git
synced 2026-01-09 17:23:08 +00:00
877 lines
21 KiB
Rust
877 lines
21 KiB
Rust
use std::mem::transmute;
|
|
use std::ops::{Add, Div, Mul, Neg, Sub};
|
|
|
|
use ethereum_types::U256;
|
|
use rand::distributions::{Distribution, Standard};
|
|
use rand::Rng;
|
|
|
|
pub const BN_BASE: U256 = U256([
|
|
0x3c208c16d87cfd47,
|
|
0x97816a916871ca8d,
|
|
0xb85045b68181585d,
|
|
0x30644e72e131a029,
|
|
]);
|
|
|
|
#[derive(Debug, Copy, Clone, PartialEq)]
|
|
pub struct Fp {
|
|
pub val: U256,
|
|
}
|
|
|
|
impl Fp {
|
|
pub fn new(val: usize) -> Fp {
|
|
Fp {
|
|
val: U256::from(val),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Distribution<Fp> for Standard {
|
|
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Fp {
|
|
let xs = rng.gen::<[u64; 4]>();
|
|
Fp {
|
|
val: U256(xs) % BN_BASE,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Add for Fp {
|
|
type Output = Self;
|
|
|
|
fn add(self, other: Self) -> Self {
|
|
Fp {
|
|
val: (self.val + other.val) % BN_BASE,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Neg for Fp {
|
|
type Output = Self;
|
|
|
|
fn neg(self) -> Self::Output {
|
|
Fp {
|
|
val: (BN_BASE - self.val) % BN_BASE,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Sub for Fp {
|
|
type Output = Self;
|
|
|
|
fn sub(self, other: Self) -> Self {
|
|
Fp {
|
|
val: (BN_BASE + self.val - other.val) % BN_BASE,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[allow(clippy::suspicious_arithmetic_impl)]
|
|
impl Mul for Fp {
|
|
type Output = Self;
|
|
|
|
fn mul(self, other: Self) -> Self {
|
|
Fp {
|
|
val: U256::try_from((self.val).full_mul(other.val) % BN_BASE).unwrap(),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Fp {
|
|
pub fn inv(self) -> Fp {
|
|
exp_fp(self, BN_BASE - 2)
|
|
}
|
|
}
|
|
|
|
#[allow(clippy::suspicious_arithmetic_impl)]
|
|
impl Div for Fp {
|
|
type Output = Self;
|
|
|
|
fn div(self, rhs: Self) -> Self::Output {
|
|
self * rhs.inv()
|
|
}
|
|
}
|
|
|
|
pub const ZERO_FP: Fp = Fp { val: U256::zero() };
|
|
pub const UNIT_FP: Fp = Fp { val: U256::one() };
|
|
|
|
fn exp_fp(x: Fp, e: U256) -> Fp {
|
|
let mut current = x;
|
|
let mut product = Fp { val: U256::one() };
|
|
|
|
for j in 0..256 {
|
|
if e.bit(j) {
|
|
product = product * current;
|
|
}
|
|
current = current * current;
|
|
}
|
|
product
|
|
}
|
|
|
|
/// The degree 2 field extension Fp2 is given by adjoining i, the square root of -1, to Fp
|
|
/// The arithmetic in this extension is standard complex arithmetic
|
|
#[derive(Debug, Copy, Clone, PartialEq)]
|
|
pub struct Fp2 {
|
|
pub re: Fp,
|
|
pub im: Fp,
|
|
}
|
|
|
|
pub const ZERO_FP2: Fp2 = Fp2 {
|
|
re: ZERO_FP,
|
|
im: ZERO_FP,
|
|
};
|
|
|
|
pub const UNIT_FP2: Fp2 = Fp2 {
|
|
re: UNIT_FP,
|
|
im: ZERO_FP,
|
|
};
|
|
|
|
impl Distribution<Fp2> for Standard {
|
|
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Fp2 {
|
|
let (re, im) = rng.gen::<(Fp, Fp)>();
|
|
Fp2 { re, im }
|
|
}
|
|
}
|
|
|
|
impl Add for Fp2 {
|
|
type Output = Self;
|
|
|
|
fn add(self, other: Self) -> Self {
|
|
Fp2 {
|
|
re: self.re + other.re,
|
|
im: self.im + other.im,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Neg for Fp2 {
|
|
type Output = Self;
|
|
|
|
fn neg(self) -> Self::Output {
|
|
Fp2 {
|
|
re: -self.re,
|
|
im: -self.im,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Sub for Fp2 {
|
|
type Output = Self;
|
|
|
|
fn sub(self, other: Self) -> Self {
|
|
Fp2 {
|
|
re: self.re - other.re,
|
|
im: self.im - other.im,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Mul for Fp2 {
|
|
type Output = Self;
|
|
|
|
fn mul(self, other: Self) -> Self {
|
|
Fp2 {
|
|
re: self.re * other.re - self.im * other.im,
|
|
im: self.re * other.im + self.im * other.re,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Fp2 {
|
|
// We preemptively define a helper function which multiplies an Fp2 element by 9 + i
|
|
fn i9(self) -> Fp2 {
|
|
let nine = Fp::new(9);
|
|
Fp2 {
|
|
re: nine * self.re - self.im,
|
|
im: self.re + nine * self.im,
|
|
}
|
|
}
|
|
|
|
// This function scalar multiplies an Fp2 by an Fp
|
|
pub fn scale(self, x: Fp) -> Fp2 {
|
|
Fp2 {
|
|
re: x * self.re,
|
|
im: x * self.im,
|
|
}
|
|
}
|
|
|
|
/// Return the complex conjugate z' of z: Fp2
|
|
/// This also happens to be the frobenius map
|
|
/// z -> z^p
|
|
/// since p == 3 mod 4 and hence
|
|
/// i^p = i^3 = -i
|
|
fn conj(self) -> Fp2 {
|
|
Fp2 {
|
|
re: self.re,
|
|
im: -self.im,
|
|
}
|
|
}
|
|
|
|
// Return the magnitude squared of a complex number
|
|
fn norm_sq(self) -> Fp {
|
|
self.re * self.re + self.im * self.im
|
|
}
|
|
|
|
/// The inverse of z is given by z'/||z||^2 since ||z||^2 = zz'
|
|
pub fn inv(self) -> Fp2 {
|
|
let norm_sq = self.norm_sq();
|
|
self.conj().scale(norm_sq.inv())
|
|
}
|
|
}
|
|
|
|
#[allow(clippy::suspicious_arithmetic_impl)]
|
|
impl Div for Fp2 {
|
|
type Output = Self;
|
|
|
|
fn div(self, rhs: Self) -> Self::Output {
|
|
self * rhs.inv()
|
|
}
|
|
}
|
|
|
|
/// The degree 3 field extension Fp6 over Fp2 is given by adjoining t, where t^3 = 9 + i
|
|
// Fp6 has basis 1, t, t^2 over Fp2
|
|
#[derive(Debug, Copy, Clone, PartialEq)]
|
|
pub struct Fp6 {
|
|
pub t0: Fp2,
|
|
pub t1: Fp2,
|
|
pub t2: Fp2,
|
|
}
|
|
|
|
pub const ZERO_FP6: Fp6 = Fp6 {
|
|
t0: ZERO_FP2,
|
|
t1: ZERO_FP2,
|
|
t2: ZERO_FP2,
|
|
};
|
|
|
|
pub const UNIT_FP6: Fp6 = Fp6 {
|
|
t0: UNIT_FP2,
|
|
t1: ZERO_FP2,
|
|
t2: ZERO_FP2,
|
|
};
|
|
|
|
impl Distribution<Fp6> for Standard {
|
|
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Fp6 {
|
|
let (t0, t1, t2) = rng.gen::<(Fp2, Fp2, Fp2)>();
|
|
Fp6 { t0, t1, t2 }
|
|
}
|
|
}
|
|
|
|
impl Add for Fp6 {
|
|
type Output = Self;
|
|
|
|
fn add(self, other: Self) -> Self {
|
|
Fp6 {
|
|
t0: self.t0 + other.t0,
|
|
t1: self.t1 + other.t1,
|
|
t2: self.t2 + other.t2,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Neg for Fp6 {
|
|
type Output = Self;
|
|
|
|
fn neg(self) -> Self::Output {
|
|
Fp6 {
|
|
t0: -self.t0,
|
|
t1: -self.t1,
|
|
t2: -self.t2,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Sub for Fp6 {
|
|
type Output = Self;
|
|
|
|
fn sub(self, other: Self) -> Self {
|
|
Fp6 {
|
|
t0: self.t0 - other.t0,
|
|
t1: self.t1 - other.t1,
|
|
t2: self.t2 - other.t2,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Mul for Fp6 {
|
|
type Output = Self;
|
|
|
|
fn mul(self, other: Self) -> Self {
|
|
Fp6 {
|
|
t0: self.t0 * other.t0 + (self.t1 * other.t2 + self.t2 * other.t1).i9(),
|
|
t1: self.t0 * other.t1 + self.t1 * other.t0 + (self.t2 * other.t2).i9(),
|
|
t2: self.t0 * other.t2 + self.t1 * other.t1 + self.t2 * other.t0,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Fp6 {
|
|
// This function scalar multiplies an Fp6 by an Fp2
|
|
fn scale(self, x: Fp2) -> Fp6 {
|
|
Fp6 {
|
|
t0: x * self.t0,
|
|
t1: x * self.t1,
|
|
t2: x * self.t2,
|
|
}
|
|
}
|
|
|
|
/// This function multiplies an Fp6 element by t, and hence shifts the bases,
|
|
/// where the t^2 coefficient picks up a factor of 9+i as the 1 coefficient of the output
|
|
fn sh(self) -> Fp6 {
|
|
Fp6 {
|
|
t0: self.t2.i9(),
|
|
t1: self.t0,
|
|
t2: self.t1,
|
|
}
|
|
}
|
|
|
|
/// The nth frobenius endomorphism of a p^q field is given by mapping
|
|
/// x to x^(p^n)
|
|
/// which sends a + bt + ct^2: Fp6 to
|
|
/// a^(p^n) + b^(p^n) * t^(p^n) + c^(p^n) * t^(2p^n)
|
|
/// The Fp2 coefficients are determined by the comment in the conj method,
|
|
/// while the values of
|
|
/// t^(p^n) and t^(2p^n)
|
|
/// are precomputed in the constant arrays FROB_T1 and FROB_T2
|
|
pub fn frob(self, n: usize) -> Fp6 {
|
|
let n = n % 6;
|
|
let frob_t1 = FROB_T1[n];
|
|
let frob_t2 = FROB_T2[n];
|
|
|
|
if n % 2 != 0 {
|
|
Fp6 {
|
|
t0: self.t0.conj(),
|
|
t1: frob_t1 * self.t1.conj(),
|
|
t2: frob_t2 * self.t2.conj(),
|
|
}
|
|
} else {
|
|
Fp6 {
|
|
t0: self.t0,
|
|
t1: frob_t1 * self.t1,
|
|
t2: frob_t2 * self.t2,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Let x_n = x^(p^n) and note that
|
|
/// x_0 = x^(p^0) = x^1 = x
|
|
/// (x_n)_m = (x^(p^n))^(p^m) = x^(p^n * p^m) = x^(p^(n+m)) = x_{n+m}
|
|
/// By Galois Theory, given x: Fp6, the product
|
|
/// phi = x_0 * x_1 * x_2 * x_3 * x_4 * x_5
|
|
/// lands in Fp, and hence the inverse of x is given by
|
|
/// (x_1 * x_2 * x_3 * x_4 * x_5) / phi
|
|
/// We can save compute by rearranging the numerator:
|
|
/// (x_1 * x_3) * x_5 * (x_1 * x_3)_1
|
|
/// By Galois theory, the following are in Fp2 and are complex conjugates
|
|
/// x_1 * x_3 * x_5, x_0 * x_2 * x_4
|
|
/// and therefore
|
|
/// phi = ||x_1 * x_3 * x_5||^2
|
|
/// and hence the inverse is given by
|
|
/// ([x_1 * x_3] * x_5) * [x_1 * x_3]_1 / ||[x_1 * x_3] * x_5||^2
|
|
pub fn inv(self) -> Fp6 {
|
|
let prod_13 = self.frob(1) * self.frob(3);
|
|
let prod_135 = (prod_13 * self.frob(5)).t0;
|
|
let phi = prod_135.norm_sq();
|
|
let prod_odds_over_phi = prod_135.scale(phi.inv());
|
|
let prod_24 = prod_13.frob(1);
|
|
prod_24.scale(prod_odds_over_phi)
|
|
}
|
|
|
|
pub fn on_stack(self) -> Vec<U256> {
|
|
let f: [U256; 6] = unsafe { transmute(self) };
|
|
f.into_iter().collect()
|
|
}
|
|
}
|
|
|
|
#[allow(clippy::suspicious_arithmetic_impl)]
|
|
impl Div for Fp6 {
|
|
type Output = Self;
|
|
|
|
fn div(self, rhs: Self) -> Self::Output {
|
|
self * rhs.inv()
|
|
}
|
|
}
|
|
|
|
/// The degree 2 field extension Fp12 over Fp6 is given by adjoining z, where z^2 = t.
|
|
/// It thus has basis 1, z over Fp6
|
|
#[derive(Debug, Copy, Clone, PartialEq)]
|
|
pub struct Fp12 {
|
|
pub z0: Fp6,
|
|
pub z1: Fp6,
|
|
}
|
|
|
|
pub const UNIT_FP12: Fp12 = Fp12 {
|
|
z0: UNIT_FP6,
|
|
z1: ZERO_FP6,
|
|
};
|
|
|
|
impl Distribution<Fp12> for Standard {
|
|
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Fp12 {
|
|
let (z0, z1) = rng.gen::<(Fp6, Fp6)>();
|
|
Fp12 { z0, z1 }
|
|
}
|
|
}
|
|
|
|
impl Mul for Fp12 {
|
|
type Output = Self;
|
|
|
|
fn mul(self, other: Self) -> Self {
|
|
let h0 = self.z0 * other.z0;
|
|
let h1 = self.z1 * other.z1;
|
|
let h01 = (self.z0 + self.z1) * (other.z0 + other.z1);
|
|
Fp12 {
|
|
z0: h0 + h1.sh(),
|
|
z1: h01 - (h0 + h1),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Fp12 {
|
|
// This function scalar multiplies an Fp12 by an Fp6
|
|
fn scale(self, x: Fp6) -> Fp12 {
|
|
Fp12 {
|
|
z0: x * self.z0,
|
|
z1: x * self.z1,
|
|
}
|
|
}
|
|
|
|
fn conj(self) -> Fp12 {
|
|
Fp12 {
|
|
z0: self.z0,
|
|
z1: -self.z1,
|
|
}
|
|
}
|
|
/// The nth frobenius endomorphism of a p^q field is given by mapping
|
|
/// x to x^(p^n)
|
|
/// which sends a + bz: Fp12 to
|
|
/// a^(p^n) + b^(p^n) * z^(p^n)
|
|
/// where the values of z^(p^n) are precomputed in the constant array FROB_Z
|
|
pub fn frob(self, n: usize) -> Fp12 {
|
|
let n = n % 12;
|
|
Fp12 {
|
|
z0: self.z0.frob(n),
|
|
z1: self.z1.frob(n).scale(FROB_Z[n]),
|
|
}
|
|
}
|
|
|
|
/// By Galois Theory, given x: Fp12, the product
|
|
/// phi = Prod_{i=0}^11 x_i
|
|
/// lands in Fp, and hence the inverse of x is given by
|
|
/// (Prod_{i=1}^11 x_i) / phi
|
|
/// The 6th Frob map is nontrivial but leaves Fp6 fixed and hence must be the conjugate:
|
|
/// x_6 = (a + bz)_6 = a - bz = x.conj()
|
|
/// Letting prod_17 = x_1 * x_7, the remaining factors in the numerator can be expresed as:
|
|
/// [(prod_17) * (prod_17)_2] * (prod_17)_4 * [(prod_17) * (prod_17)_2]_1
|
|
/// By Galois theory, both the following are in Fp2 and are complex conjugates
|
|
/// prod_odds, prod_evens
|
|
/// Thus phi = ||prod_odds||^2, and hence the inverse is given by
|
|
/// prod_odds * prod_evens_except_six * x.conj() / ||prod_odds||^2
|
|
pub fn inv(self) -> Fp12 {
|
|
let prod_17 = (self.frob(1) * self.frob(7)).z0;
|
|
let prod_1379 = prod_17 * prod_17.frob(2);
|
|
let prod_odds = (prod_1379 * prod_17.frob(4)).t0;
|
|
let phi = prod_odds.norm_sq();
|
|
let prod_odds_over_phi = prod_odds.scale(phi.inv());
|
|
let prod_evens_except_six = prod_1379.frob(1);
|
|
let prod_except_six = prod_evens_except_six.scale(prod_odds_over_phi);
|
|
self.conj().scale(prod_except_six)
|
|
}
|
|
|
|
pub fn on_stack(self) -> Vec<U256> {
|
|
let f: [U256; 12] = unsafe { transmute(self) };
|
|
f.into_iter().collect()
|
|
}
|
|
}
|
|
|
|
#[allow(clippy::suspicious_arithmetic_impl)]
|
|
impl Div for Fp12 {
|
|
type Output = Self;
|
|
|
|
fn div(self, rhs: Self) -> Self::Output {
|
|
self * rhs.inv()
|
|
}
|
|
}
|
|
|
|
const FROB_T1: [Fp2; 6] = [
|
|
Fp2 {
|
|
re: Fp { val: U256::one() },
|
|
im: Fp { val: U256::zero() },
|
|
},
|
|
Fp2 {
|
|
re: Fp {
|
|
val: U256([
|
|
0x99e39557176f553d,
|
|
0xb78cc310c2c3330c,
|
|
0x4c0bec3cf559b143,
|
|
0x2fb347984f7911f7,
|
|
]),
|
|
},
|
|
im: Fp {
|
|
val: U256([
|
|
0x1665d51c640fcba2,
|
|
0x32ae2a1d0b7c9dce,
|
|
0x4ba4cc8bd75a0794,
|
|
0x16c9e55061ebae20,
|
|
]),
|
|
},
|
|
},
|
|
Fp2 {
|
|
re: Fp {
|
|
val: U256([
|
|
0xe4bd44e5607cfd48,
|
|
0xc28f069fbb966e3d,
|
|
0x5e6dd9e7e0acccb0,
|
|
0x30644e72e131a029,
|
|
]),
|
|
},
|
|
im: Fp { val: U256::zero() },
|
|
},
|
|
Fp2 {
|
|
re: Fp {
|
|
val: U256([
|
|
0x7b746ee87bdcfb6d,
|
|
0x805ffd3d5d6942d3,
|
|
0xbaff1c77959f25ac,
|
|
0x0856e078b755ef0a,
|
|
]),
|
|
},
|
|
im: Fp {
|
|
val: U256([
|
|
0x380cab2baaa586de,
|
|
0x0fdf31bf98ff2631,
|
|
0xa9f30e6dec26094f,
|
|
0x04f1de41b3d1766f,
|
|
]),
|
|
},
|
|
},
|
|
Fp2 {
|
|
re: Fp {
|
|
val: U256([
|
|
0x5763473177fffffe,
|
|
0xd4f263f1acdb5c4f,
|
|
0x59e26bcea0d48bac,
|
|
0x0,
|
|
]),
|
|
},
|
|
im: Fp { val: U256::zero() },
|
|
},
|
|
Fp2 {
|
|
re: Fp {
|
|
val: U256([
|
|
0x62e913ee1dada9e4,
|
|
0xf71614d4b0b71f3a,
|
|
0x699582b87809d9ca,
|
|
0x28be74d4bb943f51,
|
|
]),
|
|
},
|
|
im: Fp {
|
|
val: U256([
|
|
0xedae0bcec9c7aac7,
|
|
0x54f40eb4c3f6068d,
|
|
0xc2b86abcbe01477a,
|
|
0x14a88ae0cb747b99,
|
|
]),
|
|
},
|
|
},
|
|
];
|
|
|
|
const FROB_T2: [Fp2; 6] = [
|
|
Fp2 {
|
|
re: Fp { val: U256::one() },
|
|
im: Fp { val: U256::zero() },
|
|
},
|
|
Fp2 {
|
|
re: {
|
|
Fp {
|
|
val: U256([
|
|
0x848a1f55921ea762,
|
|
0xd33365f7be94ec72,
|
|
0x80f3c0b75a181e84,
|
|
0x05b54f5e64eea801,
|
|
]),
|
|
}
|
|
},
|
|
im: {
|
|
Fp {
|
|
val: U256([
|
|
0xc13b4711cd2b8126,
|
|
0x3685d2ea1bdec763,
|
|
0x9f3a80b03b0b1c92,
|
|
0x2c145edbe7fd8aee,
|
|
]),
|
|
}
|
|
},
|
|
},
|
|
Fp2 {
|
|
re: {
|
|
Fp {
|
|
val: U256([
|
|
0x5763473177fffffe,
|
|
0xd4f263f1acdb5c4f,
|
|
0x59e26bcea0d48bac,
|
|
0x0,
|
|
]),
|
|
}
|
|
},
|
|
im: { Fp { val: U256::zero() } },
|
|
},
|
|
Fp2 {
|
|
re: {
|
|
Fp {
|
|
val: U256([
|
|
0x0e1a92bc3ccbf066,
|
|
0xe633094575b06bcb,
|
|
0x19bee0f7b5b2444e,
|
|
0xbc58c6611c08dab,
|
|
]),
|
|
}
|
|
},
|
|
im: {
|
|
Fp {
|
|
val: U256([
|
|
0x5fe3ed9d730c239f,
|
|
0xa44a9e08737f96e5,
|
|
0xfeb0f6ef0cd21d04,
|
|
0x23d5e999e1910a12,
|
|
]),
|
|
}
|
|
},
|
|
},
|
|
Fp2 {
|
|
re: {
|
|
Fp {
|
|
val: U256([
|
|
0xe4bd44e5607cfd48,
|
|
0xc28f069fbb966e3d,
|
|
0x5e6dd9e7e0acccb0,
|
|
0x30644e72e131a029,
|
|
]),
|
|
}
|
|
},
|
|
im: { Fp { val: U256::zero() } },
|
|
},
|
|
Fp2 {
|
|
re: {
|
|
Fp {
|
|
val: U256([
|
|
0xa97bda050992657f,
|
|
0xde1afb54342c724f,
|
|
0x1d9da40771b6f589,
|
|
0x1ee972ae6a826a7d,
|
|
]),
|
|
}
|
|
},
|
|
im: {
|
|
Fp {
|
|
val: U256([
|
|
0x5721e37e70c255c9,
|
|
0x54326430418536d1,
|
|
0xd2b513cdbb257724,
|
|
0x10de546ff8d4ab51,
|
|
]),
|
|
}
|
|
},
|
|
},
|
|
];
|
|
|
|
const FROB_Z: [Fp2; 12] = [
|
|
Fp2 {
|
|
re: { Fp { val: U256::one() } },
|
|
im: { Fp { val: U256::zero() } },
|
|
},
|
|
Fp2 {
|
|
re: {
|
|
Fp {
|
|
val: U256([
|
|
0xd60b35dadcc9e470,
|
|
0x5c521e08292f2176,
|
|
0xe8b99fdd76e68b60,
|
|
0x1284b71c2865a7df,
|
|
]),
|
|
}
|
|
},
|
|
im: {
|
|
Fp {
|
|
val: U256([
|
|
0xca5cf05f80f362ac,
|
|
0x747992778eeec7e5,
|
|
0xa6327cfe12150b8e,
|
|
0x246996f3b4fae7e6,
|
|
]),
|
|
}
|
|
},
|
|
},
|
|
Fp2 {
|
|
re: {
|
|
Fp {
|
|
val: U256([
|
|
0xe4bd44e5607cfd49,
|
|
0xc28f069fbb966e3d,
|
|
0x5e6dd9e7e0acccb0,
|
|
0x30644e72e131a029,
|
|
]),
|
|
}
|
|
},
|
|
im: { Fp { val: U256::zero() } },
|
|
},
|
|
Fp2 {
|
|
re: {
|
|
Fp {
|
|
val: U256([
|
|
0xe86f7d391ed4a67f,
|
|
0x894cb38dbe55d24a,
|
|
0xefe9608cd0acaa90,
|
|
0x19dc81cfcc82e4bb,
|
|
]),
|
|
}
|
|
},
|
|
im: {
|
|
Fp {
|
|
val: U256([
|
|
0x7694aa2bf4c0c101,
|
|
0x7f03a5e397d439ec,
|
|
0x06cbeee33576139d,
|
|
0xabf8b60be77d73,
|
|
]),
|
|
}
|
|
},
|
|
},
|
|
Fp2 {
|
|
re: {
|
|
Fp {
|
|
val: U256([
|
|
0xe4bd44e5607cfd48,
|
|
0xc28f069fbb966e3d,
|
|
0x5e6dd9e7e0acccb0,
|
|
0x30644e72e131a029,
|
|
]),
|
|
}
|
|
},
|
|
im: { Fp { val: U256::zero() } },
|
|
},
|
|
Fp2 {
|
|
re: {
|
|
Fp {
|
|
val: U256([
|
|
0x1264475e420ac20f,
|
|
0x2cfa95859526b0d4,
|
|
0x072fc0af59c61f30,
|
|
0x757cab3a41d3cdc,
|
|
]),
|
|
}
|
|
},
|
|
im: {
|
|
Fp {
|
|
val: U256([
|
|
0xe85845e34c4a5b9c,
|
|
0xa20b7dfd71573c93,
|
|
0x18e9b79ba4e2606c,
|
|
0xca6b035381e35b6,
|
|
]),
|
|
}
|
|
},
|
|
},
|
|
Fp2 {
|
|
re: {
|
|
Fp {
|
|
val: U256([
|
|
0x3c208c16d87cfd46,
|
|
0x97816a916871ca8d,
|
|
0xb85045b68181585d,
|
|
0x30644e72e131a029,
|
|
]),
|
|
}
|
|
},
|
|
im: { Fp { val: U256::zero() } },
|
|
},
|
|
Fp2 {
|
|
re: {
|
|
Fp {
|
|
val: U256([
|
|
0x6615563bfbb318d7,
|
|
0x3b2f4c893f42a916,
|
|
0xcf96a5d90a9accfd,
|
|
0x1ddf9756b8cbf849,
|
|
]),
|
|
}
|
|
},
|
|
im: {
|
|
Fp {
|
|
val: U256([
|
|
0x71c39bb757899a9b,
|
|
0x2307d819d98302a7,
|
|
0x121dc8b86f6c4ccf,
|
|
0x0bfab77f2c36b843,
|
|
]),
|
|
}
|
|
},
|
|
},
|
|
Fp2 {
|
|
re: {
|
|
Fp {
|
|
val: U256([
|
|
0x5763473177fffffe,
|
|
0xd4f263f1acdb5c4f,
|
|
0x59e26bcea0d48bac,
|
|
0x0,
|
|
]),
|
|
}
|
|
},
|
|
im: { Fp { val: U256::zero() } },
|
|
},
|
|
Fp2 {
|
|
re: {
|
|
Fp {
|
|
val: U256([
|
|
0x53b10eddb9a856c8,
|
|
0x0e34b703aa1bf842,
|
|
0xc866e529b0d4adcd,
|
|
0x1687cca314aebb6d,
|
|
]),
|
|
}
|
|
},
|
|
im: {
|
|
Fp {
|
|
val: U256([
|
|
0xc58be1eae3bc3c46,
|
|
0x187dc4add09d90a0,
|
|
0xb18456d34c0b44c0,
|
|
0x2fb855bcd54a22b6,
|
|
]),
|
|
}
|
|
},
|
|
},
|
|
Fp2 {
|
|
re: {
|
|
Fp {
|
|
val: U256([
|
|
0x5763473177ffffff,
|
|
0xd4f263f1acdb5c4f,
|
|
0x59e26bcea0d48bac,
|
|
0x0,
|
|
]),
|
|
}
|
|
},
|
|
im: { Fp { val: U256::zero() } },
|
|
},
|
|
Fp2 {
|
|
re: {
|
|
Fp {
|
|
val: U256([
|
|
0x29bc44b896723b38,
|
|
0x6a86d50bd34b19b9,
|
|
0xb120850727bb392d,
|
|
0x290c83bf3d14634d,
|
|
]),
|
|
}
|
|
},
|
|
im: {
|
|
Fp {
|
|
val: U256([
|
|
0x53c846338c32a1ab,
|
|
0xf575ec93f71a8df9,
|
|
0x9f668e1adc9ef7f0,
|
|
0x23bd9e3da9136a73,
|
|
]),
|
|
}
|
|
},
|
|
},
|
|
];
|