mirror of
https://github.com/logos-storage/plonky2.git
synced 2026-01-03 22:33:06 +00:00
* Bit of refactoring in FRI code - Inline `OpeningSet[Target]` and their `verify` methods, as they had become fairly trivial wrappers - Have the challenger observe the openings and generate alpha inside `verify_fri_proof`. Conceptually I think of it as part of the batch-FRI protocol, and it minimizes redundancy. * Fix tests
104 lines
3.6 KiB
Rust
104 lines
3.6 KiB
Rust
use anyhow::{ensure, Result};
|
|
|
|
use crate::field::extension_field::Extendable;
|
|
use crate::field::field_types::Field;
|
|
use crate::fri::verifier::verify_fri_proof;
|
|
use crate::hash::hashing::hash_n_to_hash;
|
|
use crate::iop::challenger::Challenger;
|
|
use crate::plonk::circuit_data::{CommonCircuitData, VerifierOnlyCircuitData};
|
|
use crate::plonk::plonk_common::reduce_with_powers;
|
|
use crate::plonk::proof::ProofWithPublicInputs;
|
|
use crate::plonk::vanishing_poly::eval_vanishing_poly;
|
|
use crate::plonk::vars::EvaluationVars;
|
|
|
|
pub(crate) fn verify<F: Extendable<D>, const D: usize>(
|
|
proof_with_pis: ProofWithPublicInputs<F, D>,
|
|
verifier_data: &VerifierOnlyCircuitData<F>,
|
|
common_data: &CommonCircuitData<F, D>,
|
|
) -> Result<()> {
|
|
let ProofWithPublicInputs {
|
|
proof,
|
|
public_inputs,
|
|
} = proof_with_pis;
|
|
let config = &common_data.config;
|
|
let num_challenges = config.num_challenges;
|
|
|
|
let public_inputs_hash = &hash_n_to_hash(public_inputs, true);
|
|
|
|
let mut challenger = Challenger::new();
|
|
|
|
// Observe the instance.
|
|
challenger.observe_hash(&common_data.circuit_digest);
|
|
challenger.observe_hash(&public_inputs_hash);
|
|
|
|
challenger.observe_hash(&proof.wires_root);
|
|
let betas = challenger.get_n_challenges(num_challenges);
|
|
let gammas = challenger.get_n_challenges(num_challenges);
|
|
|
|
challenger.observe_hash(&proof.plonk_zs_partial_products_root);
|
|
let alphas = challenger.get_n_challenges(num_challenges);
|
|
|
|
challenger.observe_hash(&proof.quotient_polys_root);
|
|
let zeta = challenger.get_extension_challenge();
|
|
|
|
let local_constants = &proof.openings.constants;
|
|
let local_wires = &proof.openings.wires;
|
|
let vars = EvaluationVars {
|
|
local_constants,
|
|
local_wires,
|
|
public_inputs_hash,
|
|
};
|
|
let local_zs = &proof.openings.plonk_zs;
|
|
let next_zs = &proof.openings.plonk_zs_right;
|
|
let s_sigmas = &proof.openings.plonk_sigmas;
|
|
let partial_products = &proof.openings.partial_products;
|
|
|
|
// Evaluate the vanishing polynomial at our challenge point, zeta.
|
|
let vanishing_polys_zeta = eval_vanishing_poly(
|
|
common_data,
|
|
zeta,
|
|
vars,
|
|
local_zs,
|
|
next_zs,
|
|
partial_products,
|
|
s_sigmas,
|
|
&betas,
|
|
&gammas,
|
|
&alphas,
|
|
);
|
|
|
|
// Check each polynomial identity, of the form `vanishing(x) = Z_H(x) quotient(x)`, at zeta.
|
|
let quotient_polys_zeta = &proof.openings.quotient_polys;
|
|
let zeta_pow_deg = zeta.exp_power_of_2(common_data.degree_bits);
|
|
let z_h_zeta = zeta_pow_deg - F::Extension::ONE;
|
|
// `quotient_polys_zeta` holds `num_challenges * quotient_degree_factor` evaluations.
|
|
// Each chunk of `quotient_degree_factor` holds the evaluations of `t_0(zeta),...,t_{quotient_degree_factor-1}(zeta)`
|
|
// where the "real" quotient polynomial is `t(X) = t_0(X) + t_1(X)*X^n + t_2(X)*X^{2n} + ...`.
|
|
// So to reconstruct `t(zeta)` we can compute `reduce_with_powers(chunk, zeta^n)` for each
|
|
// `quotient_degree_factor`-sized chunk of the original evaluations.
|
|
for (i, chunk) in quotient_polys_zeta
|
|
.chunks(common_data.quotient_degree_factor)
|
|
.enumerate()
|
|
{
|
|
ensure!(vanishing_polys_zeta[i] == z_h_zeta * reduce_with_powers(chunk, zeta_pow_deg));
|
|
}
|
|
|
|
let merkle_roots = &[
|
|
verifier_data.constants_sigmas_root,
|
|
proof.wires_root,
|
|
proof.plonk_zs_partial_products_root,
|
|
proof.quotient_polys_root,
|
|
];
|
|
|
|
verify_fri_proof(
|
|
&proof.openings,
|
|
zeta,
|
|
merkle_roots,
|
|
&proof.opening_proof,
|
|
&mut challenger,
|
|
common_data,
|
|
)?;
|
|
|
|
Ok(())
|
|
}
|