plonky2/evm/src/cpu/kernel/interpreter.rs
Daniel Lubarov cc61c7211c Core transaction processing logic
With lots of TODOs to fill in afterward; this is just a start.
2022-08-12 17:20:18 -07:00

610 lines
22 KiB
Rust

use std::collections::HashMap;
use anyhow::{anyhow, bail};
use ethereum_types::{BigEndianHash, U256, U512};
use keccak_hash::keccak;
use crate::cpu::kernel::aggregator::KERNEL;
use crate::cpu::kernel::assembler::Kernel;
use crate::cpu::kernel::prover_input::ProverInputFn;
use crate::cpu::kernel::txn_fields::NormalizedTxnField;
use crate::generation::memory::{MemoryContextState, MemorySegmentState};
use crate::memory::segments::Segment;
/// Halt interpreter execution whenever a jump to this offset is done.
const DEFAULT_HALT_OFFSET: usize = 0xdeadbeef;
#[derive(Debug)]
pub(crate) struct InterpreterMemory {
pub(crate) context_memory: Vec<MemoryContextState>,
}
impl Default for InterpreterMemory {
fn default() -> Self {
Self {
context_memory: vec![MemoryContextState::default()],
}
}
}
impl InterpreterMemory {
fn with_code_and_stack(code: &[u8], stack: Vec<U256>) -> Self {
let mut mem = Self::default();
for (i, b) in code.iter().copied().enumerate() {
mem.context_memory[0].segments[Segment::Code as usize].set(i, b.into());
}
mem.context_memory[0].segments[Segment::Stack as usize].content = stack;
mem
}
}
impl InterpreterMemory {
fn mload_general(&self, context: usize, segment: Segment, offset: usize) -> U256 {
self.context_memory[context].segments[segment as usize].get(offset)
}
fn mstore_general(&mut self, context: usize, segment: Segment, offset: usize, value: U256) {
self.context_memory[context].segments[segment as usize].set(offset, value)
}
}
pub struct Interpreter<'a> {
kernel_mode: bool,
jumpdests: Vec<usize>,
offset: usize,
context: usize,
pub(crate) memory: InterpreterMemory,
prover_inputs_map: &'a HashMap<usize, ProverInputFn>,
prover_inputs: Vec<U256>,
pub(crate) halt_offsets: Vec<usize>,
running: bool,
}
pub fn run_with_kernel(
// TODO: Remove param and just use KERNEL.
kernel: &Kernel,
initial_offset: usize,
initial_stack: Vec<U256>,
) -> anyhow::Result<Interpreter> {
run(
&kernel.code,
initial_offset,
initial_stack,
&kernel.prover_inputs,
)
}
pub fn run<'a>(
code: &'a [u8],
initial_offset: usize,
initial_stack: Vec<U256>,
prover_inputs: &'a HashMap<usize, ProverInputFn>,
) -> anyhow::Result<Interpreter<'a>> {
let mut interpreter = Interpreter::new(code, initial_offset, initial_stack, prover_inputs);
interpreter.run()?;
Ok(interpreter)
}
impl<'a> Interpreter<'a> {
pub(crate) fn new_with_kernel(initial_offset: usize, initial_stack: Vec<U256>) -> Self {
Self::new(
&KERNEL.code,
initial_offset,
initial_stack,
&KERNEL.prover_inputs,
)
}
pub(crate) fn new(
code: &'a [u8],
initial_offset: usize,
initial_stack: Vec<U256>,
prover_inputs: &'a HashMap<usize, ProverInputFn>,
) -> Self {
Self {
kernel_mode: true,
jumpdests: find_jumpdests(code),
offset: initial_offset,
memory: InterpreterMemory::with_code_and_stack(code, initial_stack),
prover_inputs_map: prover_inputs,
prover_inputs: Vec::new(),
context: 0,
halt_offsets: vec![DEFAULT_HALT_OFFSET],
running: true,
}
}
pub(crate) fn run(&mut self) -> anyhow::Result<()> {
while self.running {
self.run_opcode()?;
}
Ok(())
}
fn code(&self) -> &MemorySegmentState {
&self.memory.context_memory[self.context].segments[Segment::Code as usize]
}
fn code_slice(&self, n: usize) -> Vec<u8> {
self.code().content[self.offset..self.offset + n]
.iter()
.map(|u256| u256.byte(0))
.collect::<Vec<_>>()
}
pub(crate) fn get_txn_field(&self, field: NormalizedTxnField) -> U256 {
self.memory.context_memory[0].segments[Segment::TxnFields as usize].get(field as usize)
}
pub(crate) fn set_txn_field(&mut self, field: NormalizedTxnField, value: U256) {
self.memory.context_memory[0].segments[Segment::TxnFields as usize]
.set(field as usize, value);
}
pub(crate) fn get_txn_data(&self) -> &[U256] {
&self.memory.context_memory[0].segments[Segment::TxnData as usize].content
}
pub(crate) fn set_rlp_memory(&mut self, rlp: Vec<u8>) {
self.memory.context_memory[0].segments[Segment::RlpRaw as usize].content =
rlp.into_iter().map(U256::from).collect();
}
fn incr(&mut self, n: usize) {
self.offset += n;
}
pub(crate) fn stack(&self) -> &[U256] {
&self.memory.context_memory[self.context].segments[Segment::Stack as usize].content
}
fn stack_mut(&mut self) -> &mut Vec<U256> {
&mut self.memory.context_memory[self.context].segments[Segment::Stack as usize].content
}
fn push(&mut self, x: U256) {
self.stack_mut().push(x);
}
fn push_bool(&mut self, x: bool) {
self.push(if x { U256::one() } else { U256::zero() });
}
fn pop(&mut self) -> U256 {
self.stack_mut().pop().expect("Pop on empty stack.")
}
fn run_opcode(&mut self) -> anyhow::Result<()> {
let opcode = self.code().get(self.offset).byte(0);
self.incr(1);
match opcode {
0x00 => self.run_stop(), // "STOP",
0x01 => self.run_add(), // "ADD",
0x02 => self.run_mul(), // "MUL",
0x03 => self.run_sub(), // "SUB",
0x04 => self.run_div(), // "DIV",
0x05 => todo!(), // "SDIV",
0x06 => self.run_mod(), // "MOD",
0x07 => todo!(), // "SMOD",
0x08 => self.run_addmod(), // "ADDMOD",
0x09 => self.run_mulmod(), // "MULMOD",
0x0a => self.run_exp(), // "EXP",
0x0b => todo!(), // "SIGNEXTEND",
0x10 => self.run_lt(), // "LT",
0x11 => self.run_gt(), // "GT",
0x12 => todo!(), // "SLT",
0x13 => todo!(), // "SGT",
0x14 => self.run_eq(), // "EQ",
0x15 => self.run_iszero(), // "ISZERO",
0x16 => self.run_and(), // "AND",
0x17 => self.run_or(), // "OR",
0x18 => self.run_xor(), // "XOR",
0x19 => self.run_not(), // "NOT",
0x1a => self.run_byte(), // "BYTE",
0x1b => self.run_shl(), // "SHL",
0x1c => todo!(), // "SHR",
0x1d => todo!(), // "SAR",
0x20 => self.run_keccak256(), // "KECCAK256",
0x30 => todo!(), // "ADDRESS",
0x31 => todo!(), // "BALANCE",
0x32 => todo!(), // "ORIGIN",
0x33 => todo!(), // "CALLER",
0x34 => todo!(), // "CALLVALUE",
0x35 => todo!(), // "CALLDATALOAD",
0x36 => todo!(), // "CALLDATASIZE",
0x37 => todo!(), // "CALLDATACOPY",
0x38 => todo!(), // "CODESIZE",
0x39 => todo!(), // "CODECOPY",
0x3a => todo!(), // "GASPRICE",
0x3b => todo!(), // "EXTCODESIZE",
0x3c => todo!(), // "EXTCODECOPY",
0x3d => todo!(), // "RETURNDATASIZE",
0x3e => todo!(), // "RETURNDATACOPY",
0x3f => todo!(), // "EXTCODEHASH",
0x40 => todo!(), // "BLOCKHASH",
0x41 => todo!(), // "COINBASE",
0x42 => todo!(), // "TIMESTAMP",
0x43 => todo!(), // "NUMBER",
0x44 => todo!(), // "DIFFICULTY",
0x45 => todo!(), // "GASLIMIT",
0x46 => todo!(), // "CHAINID",
0x48 => todo!(), // "BASEFEE",
0x49 => self.run_prover_input()?, // "PROVER_INPUT",
0x50 => self.run_pop(), // "POP",
0x51 => self.run_mload(), // "MLOAD",
0x52 => self.run_mstore(), // "MSTORE",
0x53 => self.run_mstore8(), // "MSTORE8",
0x54 => todo!(), // "SLOAD",
0x55 => todo!(), // "SSTORE",
0x56 => self.run_jump(), // "JUMP",
0x57 => self.run_jumpi(), // "JUMPI",
0x58 => todo!(), // "GETPC",
0x59 => todo!(), // "MSIZE",
0x5a => todo!(), // "GAS",
0x5b => (), // "JUMPDEST",
0x5c => todo!(), // "GET_STATE_ROOT",
0x5d => todo!(), // "SET_STATE_ROOT",
0x5e => todo!(), // "GET_RECEIPT_ROOT",
0x5f => todo!(), // "SET_RECEIPT_ROOT",
x if (0x60..0x80).contains(&x) => self.run_push(x - 0x5f), // "PUSH"
x if (0x80..0x90).contains(&x) => self.run_dup(x - 0x7f), // "DUP"
x if (0x90..0xa0).contains(&x) => self.run_swap(x - 0x8f), // "SWAP"
0xa0 => todo!(), // "LOG0",
0xa1 => todo!(), // "LOG1",
0xa2 => todo!(), // "LOG2",
0xa3 => todo!(), // "LOG3",
0xa4 => todo!(), // "LOG4",
0xa5 => bail!("Executed PANIC"), // "PANIC",
0xf0 => todo!(), // "CREATE",
0xf1 => todo!(), // "CALL",
0xf2 => todo!(), // "CALLCODE",
0xf3 => todo!(), // "RETURN",
0xf4 => todo!(), // "DELEGATECALL",
0xf5 => todo!(), // "CREATE2",
0xf6 => self.run_get_context(), // "GET_CONTEXT",
0xf7 => self.run_set_context(), // "SET_CONTEXT",
0xf8 => todo!(), // "CONSUME_GAS",
0xf9 => todo!(), // "EXIT_KERNEL",
0xfa => todo!(), // "STATICCALL",
0xfb => self.run_mload_general(), // "MLOAD_GENERAL",
0xfc => self.run_mstore_general(), // "MSTORE_GENERAL",
0xfd => todo!(), // "REVERT",
0xfe => bail!("Executed INVALID"), // "INVALID",
0xff => todo!(), // "SELFDESTRUCT",
_ => bail!("Unrecognized opcode {}.", opcode),
};
Ok(())
}
fn run_stop(&mut self) {
self.running = false;
}
fn run_add(&mut self) {
let x = self.pop();
let y = self.pop();
self.push(x.overflowing_add(y).0);
}
fn run_mul(&mut self) {
let x = self.pop();
let y = self.pop();
self.push(x.overflowing_mul(y).0);
}
fn run_sub(&mut self) {
let x = self.pop();
let y = self.pop();
self.push(x.overflowing_sub(y).0);
}
fn run_div(&mut self) {
let x = self.pop();
let y = self.pop();
self.push(if y.is_zero() { U256::zero() } else { x / y });
}
fn run_mod(&mut self) {
let x = self.pop();
let y = self.pop();
self.push(if y.is_zero() { U256::zero() } else { x % y });
}
fn run_addmod(&mut self) {
let x = U512::from(self.pop());
let y = U512::from(self.pop());
let z = U512::from(self.pop());
self.push(if z.is_zero() {
U256::zero()
} else {
U256::try_from((x + y) % z).unwrap()
});
}
fn run_mulmod(&mut self) {
let x = self.pop();
let y = self.pop();
let z = U512::from(self.pop());
self.push(if z.is_zero() {
U256::zero()
} else {
U256::try_from(x.full_mul(y) % z).unwrap()
});
}
fn run_exp(&mut self) {
let x = self.pop();
let y = self.pop();
self.push(x.overflowing_pow(y).0);
}
fn run_lt(&mut self) {
let x = self.pop();
let y = self.pop();
self.push_bool(x < y);
}
fn run_gt(&mut self) {
let x = self.pop();
let y = self.pop();
self.push_bool(x > y);
}
fn run_eq(&mut self) {
let x = self.pop();
let y = self.pop();
self.push_bool(x == y);
}
fn run_iszero(&mut self) {
let x = self.pop();
self.push_bool(x.is_zero());
}
fn run_and(&mut self) {
let x = self.pop();
let y = self.pop();
self.push(x & y);
}
fn run_or(&mut self) {
let x = self.pop();
let y = self.pop();
self.push(x | y);
}
fn run_xor(&mut self) {
let x = self.pop();
let y = self.pop();
self.push(x ^ y);
}
fn run_not(&mut self) {
let x = self.pop();
self.push(!x);
}
fn run_byte(&mut self) {
dbg!("byte");
let i = self.pop();
let x = self.pop();
let result = if i > 32.into() {
0
} else {
let mut bytes = [0; 32];
x.to_big_endian(&mut bytes);
bytes[i.as_usize()]
};
self.push(result.into());
}
fn run_shl(&mut self) {
let shift = self.pop();
let x = self.pop();
self.push(x << shift);
}
fn run_keccak256(&mut self) {
let offset = self.pop().as_usize();
let size = self.pop().as_usize();
let bytes = (offset..offset + size)
.map(|i| {
self.memory
.mload_general(self.context, Segment::MainMemory, i)
.byte(0)
})
.collect::<Vec<_>>();
let hash = keccak(bytes);
self.push(hash.into_uint());
}
fn run_prover_input(&mut self) -> anyhow::Result<()> {
let prover_input_fn = self
.prover_inputs_map
.get(&(self.offset - 1))
.ok_or_else(|| anyhow!("Offset not in prover inputs."))?;
let output = prover_input_fn.run(self.stack());
self.push(output);
self.prover_inputs.push(output);
Ok(())
}
fn run_pop(&mut self) {
self.pop();
}
fn run_mload(&mut self) {
let offset = self.pop().as_usize();
let value = U256::from_big_endian(
&(0..32)
.map(|i| {
self.memory
.mload_general(self.context, Segment::MainMemory, offset + i)
.byte(0)
})
.collect::<Vec<_>>(),
);
self.push(value);
}
fn run_mstore(&mut self) {
let offset = self.pop().as_usize();
let value = self.pop();
let mut bytes = [0; 32];
value.to_big_endian(&mut bytes);
for (i, byte) in (0..32).zip(bytes) {
self.memory
.mstore_general(self.context, Segment::MainMemory, offset + i, byte.into());
}
}
fn run_mstore8(&mut self) {
let offset = self.pop().as_usize();
let value = self.pop();
self.memory.mstore_general(
self.context,
Segment::MainMemory,
offset,
value.byte(0).into(),
);
}
fn run_jump(&mut self) {
let x = self.pop().as_usize();
self.jump_to(x);
}
fn run_jumpi(&mut self) {
let x = self.pop().as_usize();
let b = self.pop();
if !b.is_zero() {
self.jump_to(x);
}
}
fn jump_to(&mut self, offset: usize) {
// The JUMPDEST rule is not enforced in kernel mode.
if !self.kernel_mode && self.jumpdests.binary_search(&offset).is_err() {
panic!("Destination is not a JUMPDEST.");
}
self.offset = offset;
if self.halt_offsets.contains(&offset) {
self.running = false;
}
}
fn run_push(&mut self, num_bytes: u8) {
let x = U256::from_big_endian(&self.code_slice(num_bytes as usize));
self.incr(num_bytes as usize);
self.push(x);
}
fn run_dup(&mut self, n: u8) {
self.push(self.stack()[self.stack().len() - n as usize]);
}
fn run_swap(&mut self, n: u8) {
let len = self.stack().len();
self.stack_mut().swap(len - 1, len - n as usize - 1);
}
fn run_get_context(&mut self) {
self.push(self.context.into());
}
fn run_set_context(&mut self) {
let x = self.pop();
self.context = x.as_usize();
}
fn run_mload_general(&mut self) {
let context = self.pop().as_usize();
let segment = Segment::all()[self.pop().as_usize()];
let offset = self.pop().as_usize();
let value = self.memory.mload_general(context, segment, offset);
assert!(value.bits() <= segment.bit_range());
self.push(value);
}
fn run_mstore_general(&mut self) {
let context = self.pop().as_usize();
let segment = Segment::all()[self.pop().as_usize()];
let offset = self.pop().as_usize();
let value = self.pop();
assert!(value.bits() <= segment.bit_range());
self.memory.mstore_general(context, segment, offset, value);
}
}
/// Return the (ordered) JUMPDEST offsets in the code.
fn find_jumpdests(code: &[u8]) -> Vec<usize> {
let mut offset = 0;
let mut res = Vec::new();
while offset < code.len() {
let opcode = code[offset];
match opcode {
0x5b => res.push(offset),
x if (0x60..0x80).contains(&x) => offset += x as usize - 0x5f, // PUSH instruction, disregard data.
_ => (),
}
offset += 1;
}
res
}
#[cfg(test)]
mod tests {
use std::collections::HashMap;
use crate::cpu::kernel::interpreter::run;
use crate::memory::segments::Segment;
#[test]
fn test_run() -> anyhow::Result<()> {
let code = vec![
0x60, 0x1, 0x60, 0x2, 0x1, 0x63, 0xde, 0xad, 0xbe, 0xef, 0x56,
]; // PUSH1, 1, PUSH1, 2, ADD, PUSH4 deadbeef, JUMP
assert_eq!(
run(&code, 0, vec![], &HashMap::new())?.stack(),
&[0x3.into()],
);
Ok(())
}
#[test]
fn test_run_with_memory() -> anyhow::Result<()> {
// PUSH1 0xff
// PUSH1 0
// MSTORE
// PUSH1 0
// MLOAD
// PUSH1 1
// MLOAD
// PUSH1 0x42
// PUSH1 0x27
// MSTORE8
let code = vec![
0x60, 0xff, 0x60, 0x0, 0x52, 0x60, 0, 0x51, 0x60, 0x1, 0x51, 0x60, 0x42, 0x60, 0x27,
0x53,
];
let pis = HashMap::new();
let run = run(&code, 0, vec![], &pis)?;
assert_eq!(run.stack(), &[0xff.into(), 0xff00.into()]);
assert_eq!(
run.memory.context_memory[0].segments[Segment::MainMemory as usize].get(0x27),
0x42.into()
);
assert_eq!(
run.memory.context_memory[0].segments[Segment::MainMemory as usize].get(0x1f),
0xff.into()
);
Ok(())
}
}