mirror of
https://github.com/logos-storage/plonky2.git
synced 2026-01-03 14:23:07 +00:00
It seems redundant in most contexts, e.g. `use plonky2::field::extension_field::Extendable;`. One could import `extension_field`, but it's not that common in Rust, and `field::extension` is now about as short.
496 lines
13 KiB
Rust
496 lines
13 KiB
Rust
use std::ops::Mul;
|
|
|
|
use static_assertions::const_assert;
|
|
|
|
use crate::extension::quadratic::QuadraticExtension;
|
|
use crate::extension::quartic::QuarticExtension;
|
|
use crate::extension::quintic::QuinticExtension;
|
|
use crate::extension::{Extendable, Frobenius};
|
|
use crate::field_types::Field;
|
|
use crate::goldilocks_field::{reduce160, GoldilocksField};
|
|
|
|
impl Frobenius<1> for GoldilocksField {}
|
|
|
|
impl Extendable<2> for GoldilocksField {
|
|
type Extension = QuadraticExtension<Self>;
|
|
|
|
// Verifiable in Sage with
|
|
// `R.<x> = GF(p)[]; assert (x^2 - 7).is_irreducible()`.
|
|
const W: Self = Self(7);
|
|
|
|
// DTH_ROOT = W^((ORDER - 1)/2)
|
|
const DTH_ROOT: Self = Self(18446744069414584320);
|
|
|
|
const EXT_MULTIPLICATIVE_GROUP_GENERATOR: [Self; 2] =
|
|
[Self(18081566051660590251), Self(16121475356294670766)];
|
|
|
|
const EXT_POWER_OF_TWO_GENERATOR: [Self; 2] = [Self(0), Self(15659105665374529263)];
|
|
}
|
|
|
|
impl Mul for QuadraticExtension<GoldilocksField> {
|
|
#[inline]
|
|
fn mul(self, rhs: Self) -> Self {
|
|
let Self([a0, a1]) = self;
|
|
let Self([b0, b1]) = rhs;
|
|
let c = ext2_mul([a0.0, a1.0], [b0.0, b1.0]);
|
|
Self(c)
|
|
}
|
|
}
|
|
|
|
impl Extendable<4> for GoldilocksField {
|
|
type Extension = QuarticExtension<Self>;
|
|
|
|
const W: Self = Self(7);
|
|
|
|
// DTH_ROOT = W^((ORDER - 1)/4)
|
|
const DTH_ROOT: Self = Self(281474976710656);
|
|
|
|
const EXT_MULTIPLICATIVE_GROUP_GENERATOR: [Self; 4] = [
|
|
Self(5024755240244648895),
|
|
Self(13227474371289740625),
|
|
Self(3912887029498544536),
|
|
Self(3900057112666848848),
|
|
];
|
|
|
|
const EXT_POWER_OF_TWO_GENERATOR: [Self; 4] =
|
|
[Self(0), Self(0), Self(0), Self(12587610116473453104)];
|
|
}
|
|
|
|
impl Mul for QuarticExtension<GoldilocksField> {
|
|
#[inline]
|
|
fn mul(self, rhs: Self) -> Self {
|
|
let Self([a0, a1, a2, a3]) = self;
|
|
let Self([b0, b1, b2, b3]) = rhs;
|
|
let c = ext4_mul([a0.0, a1.0, a2.0, a3.0], [b0.0, b1.0, b2.0, b3.0]);
|
|
Self(c)
|
|
}
|
|
}
|
|
|
|
impl Extendable<5> for GoldilocksField {
|
|
type Extension = QuinticExtension<Self>;
|
|
|
|
const W: Self = Self(3);
|
|
|
|
// DTH_ROOT = W^((ORDER - 1)/5)
|
|
const DTH_ROOT: Self = Self(1041288259238279555);
|
|
|
|
const EXT_MULTIPLICATIVE_GROUP_GENERATOR: [Self; 5] = [
|
|
Self(2899034827742553394),
|
|
Self(13012057356839176729),
|
|
Self(14593811582388663055),
|
|
Self(7722900811313895436),
|
|
Self(4557222484695340057),
|
|
];
|
|
|
|
const EXT_POWER_OF_TWO_GENERATOR: [Self; 5] = [
|
|
Self::POWER_OF_TWO_GENERATOR,
|
|
Self(0),
|
|
Self(0),
|
|
Self(0),
|
|
Self(0),
|
|
];
|
|
}
|
|
|
|
impl Mul for QuinticExtension<GoldilocksField> {
|
|
#[inline]
|
|
fn mul(self, rhs: Self) -> Self {
|
|
let Self([a0, a1, a2, a3, a4]) = self;
|
|
let Self([b0, b1, b2, b3, b4]) = rhs;
|
|
let c = ext5_mul(
|
|
[a0.0, a1.0, a2.0, a3.0, a4.0],
|
|
[b0.0, b1.0, b2.0, b3.0, b4.0],
|
|
);
|
|
Self(c)
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The functions extD_add_prods[0-4] are helper functions for
|
|
* computing products for extensions of degree D over the Goldilocks
|
|
* field. They are faster than the generic method because all
|
|
* reductions are delayed until the end which means only one per
|
|
* result coefficient is necessary.
|
|
*/
|
|
|
|
/// Return a, b such that a + b*2^128 = 3*x with a < 2^128 and b < 2^32.
|
|
#[inline(always)]
|
|
fn u160_times_3(x: u128, y: u32) -> (u128, u32) {
|
|
let (s, cy) = x.overflowing_add(x << 1);
|
|
(s, 3 * y + (x >> 127) as u32 + cy as u32)
|
|
}
|
|
|
|
/// Return a, b such that a + b*2^128 = 7*x with a < 2^128 and b < 2^32.
|
|
#[inline(always)]
|
|
fn u160_times_7(x: u128, y: u32) -> (u128, u32) {
|
|
let (d, br) = (x << 3).overflowing_sub(x);
|
|
// NB: subtracting the borrow can't underflow
|
|
(d, 7 * y + (x >> (128 - 3)) as u32 - br as u32)
|
|
}
|
|
|
|
/*
|
|
* Quadratic multiplication and squaring
|
|
*/
|
|
|
|
#[inline(always)]
|
|
fn ext2_add_prods0(a: &[u64; 2], b: &[u64; 2]) -> GoldilocksField {
|
|
// Computes a0 * b0 + W * a1 * b1;
|
|
let [a0, a1] = *a;
|
|
let [b0, b1] = *b;
|
|
|
|
let cy;
|
|
|
|
// W * a1 * b1
|
|
let (mut cumul_lo, mut cumul_hi) = u160_times_7((a1 as u128) * (b1 as u128), 0u32);
|
|
|
|
// a0 * b0
|
|
(cumul_lo, cy) = cumul_lo.overflowing_add((a0 as u128) * (b0 as u128));
|
|
cumul_hi += cy as u32;
|
|
|
|
unsafe { reduce160(cumul_lo, cumul_hi) }
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn ext2_add_prods1(a: &[u64; 2], b: &[u64; 2]) -> GoldilocksField {
|
|
// Computes a0 * b1 + a1 * b0;
|
|
let [a0, a1] = *a;
|
|
let [b0, b1] = *b;
|
|
|
|
let cy;
|
|
|
|
// a0 * b1
|
|
let mut cumul_lo = (a0 as u128) * (b1 as u128);
|
|
|
|
// a1 * b0
|
|
(cumul_lo, cy) = cumul_lo.overflowing_add((a1 as u128) * (b0 as u128));
|
|
let cumul_hi = cy as u32;
|
|
|
|
unsafe { reduce160(cumul_lo, cumul_hi) }
|
|
}
|
|
|
|
/// Multiply a and b considered as elements of GF(p^2).
|
|
#[inline(always)]
|
|
pub(crate) fn ext2_mul(a: [u64; 2], b: [u64; 2]) -> [GoldilocksField; 2] {
|
|
// The code in ext2_add_prods[01] assumes the quadratic extension
|
|
// generator is 7.
|
|
const_assert!(<GoldilocksField as Extendable<2>>::W.0 == 7u64);
|
|
|
|
let c0 = ext2_add_prods0(&a, &b);
|
|
let c1 = ext2_add_prods1(&a, &b);
|
|
[c0, c1]
|
|
}
|
|
|
|
/*
|
|
* Quartic multiplication and squaring
|
|
*/
|
|
|
|
#[inline(always)]
|
|
fn ext4_add_prods0(a: &[u64; 4], b: &[u64; 4]) -> GoldilocksField {
|
|
// Computes c0 = a0 * b0 + W * (a1 * b3 + a2 * b2 + a3 * b1)
|
|
|
|
let [a0, a1, a2, a3] = *a;
|
|
let [b0, b1, b2, b3] = *b;
|
|
|
|
let mut cy;
|
|
|
|
// a1 * b3
|
|
let mut cumul_lo = (a1 as u128) * (b3 as u128);
|
|
|
|
// a2 * b2
|
|
(cumul_lo, cy) = cumul_lo.overflowing_add((a2 as u128) * (b2 as u128));
|
|
let mut cumul_hi = cy as u32;
|
|
|
|
// a3 * b1
|
|
(cumul_lo, cy) = cumul_lo.overflowing_add((a3 as u128) * (b1 as u128));
|
|
cumul_hi += cy as u32;
|
|
|
|
// * W
|
|
(cumul_lo, cumul_hi) = u160_times_7(cumul_lo, cumul_hi);
|
|
|
|
// a0 * b0
|
|
(cumul_lo, cy) = cumul_lo.overflowing_add((a0 as u128) * (b0 as u128));
|
|
cumul_hi += cy as u32;
|
|
|
|
unsafe { reduce160(cumul_lo, cumul_hi) }
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn ext4_add_prods1(a: &[u64; 4], b: &[u64; 4]) -> GoldilocksField {
|
|
// Computes c1 = a0 * b1 + a1 * b0 + W * (a2 * b3 + a3 * b2);
|
|
|
|
let [a0, a1, a2, a3] = *a;
|
|
let [b0, b1, b2, b3] = *b;
|
|
|
|
let mut cy;
|
|
|
|
// a2 * b3
|
|
let mut cumul_lo = (a2 as u128) * (b3 as u128);
|
|
|
|
// a3 * b2
|
|
(cumul_lo, cy) = cumul_lo.overflowing_add((a3 as u128) * (b2 as u128));
|
|
let mut cumul_hi = cy as u32;
|
|
|
|
// * W
|
|
(cumul_lo, cumul_hi) = u160_times_7(cumul_lo, cumul_hi);
|
|
|
|
// a0 * b1
|
|
(cumul_lo, cy) = cumul_lo.overflowing_add((a0 as u128) * (b1 as u128));
|
|
cumul_hi += cy as u32;
|
|
|
|
// a1 * b0
|
|
(cumul_lo, cy) = cumul_lo.overflowing_add((a1 as u128) * (b0 as u128));
|
|
cumul_hi += cy as u32;
|
|
|
|
unsafe { reduce160(cumul_lo, cumul_hi) }
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn ext4_add_prods2(a: &[u64; 4], b: &[u64; 4]) -> GoldilocksField {
|
|
// Computes c2 = a0 * b2 + a1 * b1 + a2 * b0 + W * a3 * b3;
|
|
|
|
let [a0, a1, a2, a3] = *a;
|
|
let [b0, b1, b2, b3] = *b;
|
|
|
|
let mut cy;
|
|
|
|
// W * a3 * b3
|
|
let (mut cumul_lo, mut cumul_hi) = u160_times_7((a3 as u128) * (b3 as u128), 0u32);
|
|
|
|
// a0 * b2
|
|
(cumul_lo, cy) = cumul_lo.overflowing_add((a0 as u128) * (b2 as u128));
|
|
cumul_hi += cy as u32;
|
|
|
|
// a1 * b1
|
|
(cumul_lo, cy) = cumul_lo.overflowing_add((a1 as u128) * (b1 as u128));
|
|
cumul_hi += cy as u32;
|
|
|
|
// a2 * b0
|
|
(cumul_lo, cy) = cumul_lo.overflowing_add((a2 as u128) * (b0 as u128));
|
|
cumul_hi += cy as u32;
|
|
|
|
unsafe { reduce160(cumul_lo, cumul_hi) }
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn ext4_add_prods3(a: &[u64; 4], b: &[u64; 4]) -> GoldilocksField {
|
|
// Computes c3 = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0;
|
|
|
|
let [a0, a1, a2, a3] = *a;
|
|
let [b0, b1, b2, b3] = *b;
|
|
|
|
let mut cy;
|
|
|
|
// a0 * b3
|
|
let mut cumul_lo = (a0 as u128) * (b3 as u128);
|
|
|
|
// a1 * b2
|
|
(cumul_lo, cy) = cumul_lo.overflowing_add((a1 as u128) * (b2 as u128));
|
|
let mut cumul_hi = cy as u32;
|
|
|
|
// a2 * b1
|
|
(cumul_lo, cy) = cumul_lo.overflowing_add((a2 as u128) * (b1 as u128));
|
|
cumul_hi += cy as u32;
|
|
|
|
// a3 * b0
|
|
(cumul_lo, cy) = cumul_lo.overflowing_add((a3 as u128) * (b0 as u128));
|
|
cumul_hi += cy as u32;
|
|
|
|
unsafe { reduce160(cumul_lo, cumul_hi) }
|
|
}
|
|
|
|
/// Multiply a and b considered as elements of GF(p^4).
|
|
#[inline(always)]
|
|
pub(crate) fn ext4_mul(a: [u64; 4], b: [u64; 4]) -> [GoldilocksField; 4] {
|
|
// The code in ext4_add_prods[0-3] assumes the quartic extension
|
|
// generator is 7.
|
|
const_assert!(<GoldilocksField as Extendable<4>>::W.0 == 7u64);
|
|
|
|
let c0 = ext4_add_prods0(&a, &b);
|
|
let c1 = ext4_add_prods1(&a, &b);
|
|
let c2 = ext4_add_prods2(&a, &b);
|
|
let c3 = ext4_add_prods3(&a, &b);
|
|
[c0, c1, c2, c3]
|
|
}
|
|
|
|
/*
|
|
* Quintic multiplication and squaring
|
|
*/
|
|
|
|
#[inline(always)]
|
|
fn ext5_add_prods0(a: &[u64; 5], b: &[u64; 5]) -> GoldilocksField {
|
|
// Computes c0 = a0 * b0 + W * (a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1)
|
|
|
|
let [a0, a1, a2, a3, a4] = *a;
|
|
let [b0, b1, b2, b3, b4] = *b;
|
|
|
|
let mut cy;
|
|
|
|
// a1 * b4
|
|
let mut cumul_lo = (a1 as u128) * (b4 as u128);
|
|
|
|
// a2 * b3
|
|
(cumul_lo, cy) = cumul_lo.overflowing_add((a2 as u128) * (b3 as u128));
|
|
let mut cumul_hi = cy as u32;
|
|
|
|
// a3 * b2
|
|
(cumul_lo, cy) = cumul_lo.overflowing_add((a3 as u128) * (b2 as u128));
|
|
cumul_hi += cy as u32;
|
|
|
|
// a4 * b1
|
|
(cumul_lo, cy) = cumul_lo.overflowing_add((a4 as u128) * (b1 as u128));
|
|
cumul_hi += cy as u32;
|
|
|
|
// * W
|
|
(cumul_lo, cumul_hi) = u160_times_3(cumul_lo, cumul_hi);
|
|
|
|
// a0 * b0
|
|
(cumul_lo, cy) = cumul_lo.overflowing_add((a0 as u128) * (b0 as u128));
|
|
cumul_hi += cy as u32;
|
|
|
|
unsafe { reduce160(cumul_lo, cumul_hi) }
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn ext5_add_prods1(a: &[u64; 5], b: &[u64; 5]) -> GoldilocksField {
|
|
// Computes c1 = a0 * b1 + a1 * b0 + W * (a2 * b4 + a3 * b3 + a4 * b2);
|
|
|
|
let [a0, a1, a2, a3, a4] = *a;
|
|
let [b0, b1, b2, b3, b4] = *b;
|
|
|
|
let mut cy;
|
|
|
|
// a2 * b4
|
|
let mut cumul_lo = (a2 as u128) * (b4 as u128);
|
|
|
|
// a3 * b3
|
|
(cumul_lo, cy) = cumul_lo.overflowing_add((a3 as u128) * (b3 as u128));
|
|
let mut cumul_hi = cy as u32;
|
|
|
|
// a4 * b2
|
|
(cumul_lo, cy) = cumul_lo.overflowing_add((a4 as u128) * (b2 as u128));
|
|
cumul_hi += cy as u32;
|
|
|
|
// * W
|
|
(cumul_lo, cumul_hi) = u160_times_3(cumul_lo, cumul_hi);
|
|
|
|
// a0 * b1
|
|
(cumul_lo, cy) = cumul_lo.overflowing_add((a0 as u128) * (b1 as u128));
|
|
cumul_hi += cy as u32;
|
|
|
|
// a1 * b0
|
|
(cumul_lo, cy) = cumul_lo.overflowing_add((a1 as u128) * (b0 as u128));
|
|
cumul_hi += cy as u32;
|
|
|
|
unsafe { reduce160(cumul_lo, cumul_hi) }
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn ext5_add_prods2(a: &[u64; 5], b: &[u64; 5]) -> GoldilocksField {
|
|
// Computes c2 = a0 * b2 + a1 * b1 + a2 * b0 + W * (a3 * b4 + a4 * b3);
|
|
|
|
let [a0, a1, a2, a3, a4] = *a;
|
|
let [b0, b1, b2, b3, b4] = *b;
|
|
|
|
let mut cy;
|
|
|
|
// a3 * b4
|
|
let mut cumul_lo = (a3 as u128) * (b4 as u128);
|
|
|
|
// a4 * b3
|
|
(cumul_lo, cy) = cumul_lo.overflowing_add((a4 as u128) * (b3 as u128));
|
|
let mut cumul_hi = cy as u32;
|
|
|
|
// * W
|
|
(cumul_lo, cumul_hi) = u160_times_3(cumul_lo, cumul_hi);
|
|
|
|
// a0 * b2
|
|
(cumul_lo, cy) = cumul_lo.overflowing_add((a0 as u128) * (b2 as u128));
|
|
cumul_hi += cy as u32;
|
|
|
|
// a1 * b1
|
|
(cumul_lo, cy) = cumul_lo.overflowing_add((a1 as u128) * (b1 as u128));
|
|
cumul_hi += cy as u32;
|
|
|
|
// a2 * b0
|
|
(cumul_lo, cy) = cumul_lo.overflowing_add((a2 as u128) * (b0 as u128));
|
|
cumul_hi += cy as u32;
|
|
|
|
unsafe { reduce160(cumul_lo, cumul_hi) }
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn ext5_add_prods3(a: &[u64; 5], b: &[u64; 5]) -> GoldilocksField {
|
|
// Computes c3 = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0 + W * a4 * b4;
|
|
|
|
let [a0, a1, a2, a3, a4] = *a;
|
|
let [b0, b1, b2, b3, b4] = *b;
|
|
|
|
let mut cy;
|
|
|
|
// W * a4 * b4
|
|
let (mut cumul_lo, mut cumul_hi) = u160_times_3((a4 as u128) * (b4 as u128), 0u32);
|
|
|
|
// a0 * b3
|
|
(cumul_lo, cy) = cumul_lo.overflowing_add((a0 as u128) * (b3 as u128));
|
|
cumul_hi += cy as u32;
|
|
|
|
// a1 * b2
|
|
(cumul_lo, cy) = cumul_lo.overflowing_add((a1 as u128) * (b2 as u128));
|
|
cumul_hi += cy as u32;
|
|
|
|
// a2 * b1
|
|
(cumul_lo, cy) = cumul_lo.overflowing_add((a2 as u128) * (b1 as u128));
|
|
cumul_hi += cy as u32;
|
|
|
|
// a3 * b0
|
|
(cumul_lo, cy) = cumul_lo.overflowing_add((a3 as u128) * (b0 as u128));
|
|
cumul_hi += cy as u32;
|
|
|
|
unsafe { reduce160(cumul_lo, cumul_hi) }
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn ext5_add_prods4(a: &[u64; 5], b: &[u64; 5]) -> GoldilocksField {
|
|
// Computes c4 = a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0;
|
|
|
|
let [a0, a1, a2, a3, a4] = *a;
|
|
let [b0, b1, b2, b3, b4] = *b;
|
|
|
|
let mut cy;
|
|
|
|
// a0 * b4
|
|
let mut cumul_lo = (a0 as u128) * (b4 as u128);
|
|
|
|
// a1 * b3
|
|
(cumul_lo, cy) = cumul_lo.overflowing_add((a1 as u128) * (b3 as u128));
|
|
let mut cumul_hi = cy as u32;
|
|
|
|
// a2 * b2
|
|
(cumul_lo, cy) = cumul_lo.overflowing_add((a2 as u128) * (b2 as u128));
|
|
cumul_hi += cy as u32;
|
|
|
|
// a3 * b1
|
|
(cumul_lo, cy) = cumul_lo.overflowing_add((a3 as u128) * (b1 as u128));
|
|
cumul_hi += cy as u32;
|
|
|
|
// a4 * b0
|
|
(cumul_lo, cy) = cumul_lo.overflowing_add((a4 as u128) * (b0 as u128));
|
|
cumul_hi += cy as u32;
|
|
|
|
unsafe { reduce160(cumul_lo, cumul_hi) }
|
|
}
|
|
|
|
/// Multiply a and b considered as elements of GF(p^5).
|
|
#[inline(always)]
|
|
pub(crate) fn ext5_mul(a: [u64; 5], b: [u64; 5]) -> [GoldilocksField; 5] {
|
|
// The code in ext5_add_prods[0-4] assumes the quintic extension
|
|
// generator is 3.
|
|
const_assert!(<GoldilocksField as Extendable<5>>::W.0 == 3u64);
|
|
|
|
let c0 = ext5_add_prods0(&a, &b);
|
|
let c1 = ext5_add_prods1(&a, &b);
|
|
let c2 = ext5_add_prods2(&a, &b);
|
|
let c3 = ext5_add_prods3(&a, &b);
|
|
let c4 = ext5_add_prods4(&a, &b);
|
|
[c0, c1, c2, c3, c4]
|
|
}
|