mirror of
https://github.com/logos-storage/plonky2.git
synced 2026-01-04 14:53:08 +00:00
* Have add_gate take a generic type instead of GateRef There are a couple advantages - Users writing their own gates won't need to know about the `GateRef` wrapper; it's more of an internal thing now. - Easier access to gate methods requiring `self` -- for example, `split_le_base` can just call `gate_type.limbs()` now. * Update comment * Always insert
188 lines
5.9 KiB
Rust
188 lines
5.9 KiB
Rust
use anyhow::{ensure, Result};
|
|
use serde::{Deserialize, Serialize};
|
|
|
|
use crate::circuit_builder::CircuitBuilder;
|
|
use crate::field::extension_field::Extendable;
|
|
use crate::field::field::Field;
|
|
use crate::gates::gmimc::GMiMCGate;
|
|
use crate::hash::GMIMC_ROUNDS;
|
|
use crate::hash::{compress, hash_or_noop};
|
|
use crate::proof::{Hash, HashTarget};
|
|
use crate::target::Target;
|
|
use crate::wire::Wire;
|
|
|
|
#[derive(Clone, Debug, Serialize, Deserialize)]
|
|
#[serde(bound = "")]
|
|
pub struct MerkleProof<F: Field> {
|
|
/// The Merkle digest of each sibling subtree, staying from the bottommost layer.
|
|
pub siblings: Vec<Hash<F>>,
|
|
}
|
|
|
|
#[derive(Clone)]
|
|
pub struct MerkleProofTarget {
|
|
/// The Merkle digest of each sibling subtree, staying from the bottommost layer.
|
|
pub siblings: Vec<HashTarget>,
|
|
}
|
|
|
|
/// Verifies that the given leaf data is present at the given index in the Merkle tree with the
|
|
/// given root.
|
|
pub(crate) fn verify_merkle_proof<F: Field>(
|
|
leaf_data: Vec<F>,
|
|
leaf_index: usize,
|
|
merkle_root: Hash<F>,
|
|
proof: &MerkleProof<F>,
|
|
reverse_bits: bool,
|
|
) -> Result<()> {
|
|
ensure!(
|
|
leaf_index >> proof.siblings.len() == 0,
|
|
"Merkle leaf index is too large."
|
|
);
|
|
|
|
let index = if reverse_bits {
|
|
crate::util::reverse_bits(leaf_index, proof.siblings.len())
|
|
} else {
|
|
leaf_index
|
|
};
|
|
let mut current_digest = hash_or_noop(leaf_data);
|
|
for (i, &sibling_digest) in proof.siblings.iter().enumerate() {
|
|
let bit = (index >> i & 1) == 1;
|
|
current_digest = if bit {
|
|
compress(sibling_digest, current_digest)
|
|
} else {
|
|
compress(current_digest, sibling_digest)
|
|
}
|
|
}
|
|
ensure!(current_digest == merkle_root, "Invalid Merkle proof.");
|
|
|
|
Ok(())
|
|
}
|
|
|
|
impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
|
|
/// Verifies that the given leaf data is present at the given index in the Merkle tree with the
|
|
/// given root. The index is given by it's little-endian bits.
|
|
pub(crate) fn verify_merkle_proof(
|
|
&mut self,
|
|
leaf_data: Vec<Target>,
|
|
leaf_index_bits: &[Target],
|
|
merkle_root: HashTarget,
|
|
proof: &MerkleProofTarget,
|
|
) {
|
|
let zero = self.zero();
|
|
|
|
let mut state: HashTarget = self.hash_or_noop(leaf_data);
|
|
|
|
for (&bit, &sibling) in leaf_index_bits.iter().zip(&proof.siblings) {
|
|
let gate_type = GMiMCGate::<F, D, GMIMC_ROUNDS>::new_automatic_constants();
|
|
let gate = self.add_gate(gate_type, vec![]);
|
|
|
|
let swap_wire = GMiMCGate::<F, D, GMIMC_ROUNDS>::WIRE_SWAP;
|
|
let swap_wire = Target::Wire(Wire {
|
|
gate,
|
|
input: swap_wire,
|
|
});
|
|
self.generate_copy(bit, swap_wire);
|
|
|
|
let input_wires = (0..12)
|
|
.map(|i| {
|
|
Target::Wire(Wire {
|
|
gate,
|
|
input: GMiMCGate::<F, D, GMIMC_ROUNDS>::wire_input(i),
|
|
})
|
|
})
|
|
.collect::<Vec<_>>();
|
|
|
|
for i in 0..4 {
|
|
self.route(state.elements[i], input_wires[i]);
|
|
self.route(sibling.elements[i], input_wires[4 + i]);
|
|
self.route(zero, input_wires[8 + i]);
|
|
}
|
|
|
|
state = HashTarget::from_vec(
|
|
(0..4)
|
|
.map(|i| {
|
|
Target::Wire(Wire {
|
|
gate,
|
|
input: GMiMCGate::<F, D, GMIMC_ROUNDS>::wire_output(i),
|
|
})
|
|
})
|
|
.collect(),
|
|
)
|
|
}
|
|
|
|
self.named_assert_hashes_equal(state, merkle_root, "check Merkle root".into())
|
|
}
|
|
|
|
pub(crate) fn assert_hashes_equal(&mut self, x: HashTarget, y: HashTarget) {
|
|
for i in 0..4 {
|
|
self.assert_equal(x.elements[i], y.elements[i]);
|
|
}
|
|
}
|
|
|
|
pub(crate) fn named_assert_hashes_equal(&mut self, x: HashTarget, y: HashTarget, name: String) {
|
|
for i in 0..4 {
|
|
self.named_assert_equal(
|
|
x.elements[i],
|
|
y.elements[i],
|
|
format!("{}: {}-th hash element", name, i),
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use anyhow::Result;
|
|
use rand::{thread_rng, Rng};
|
|
|
|
use super::*;
|
|
use crate::circuit_data::CircuitConfig;
|
|
use crate::field::crandall_field::CrandallField;
|
|
use crate::merkle_tree::MerkleTree;
|
|
use crate::verifier::verify;
|
|
use crate::witness::PartialWitness;
|
|
|
|
fn random_data<F: Field>(n: usize, k: usize) -> Vec<Vec<F>> {
|
|
(0..n).map(|_| F::rand_vec(k)).collect()
|
|
}
|
|
|
|
#[test]
|
|
fn test_recursive_merkle_proof() -> Result<()> {
|
|
type F = CrandallField;
|
|
let config = CircuitConfig::large_config();
|
|
let mut builder = CircuitBuilder::<F, 4>::new(config);
|
|
let mut pw = PartialWitness::new();
|
|
|
|
let log_n = 8;
|
|
let n = 1 << log_n;
|
|
let leaves = random_data::<F>(n, 7);
|
|
let tree = MerkleTree::new(leaves, false);
|
|
let i: usize = thread_rng().gen_range(0, n);
|
|
let proof = tree.prove(i);
|
|
|
|
let proof_t = MerkleProofTarget {
|
|
siblings: builder.add_virtual_hashes(proof.siblings.len()),
|
|
};
|
|
for i in 0..proof.siblings.len() {
|
|
pw.set_hash_target(proof_t.siblings[i], proof.siblings[i]);
|
|
}
|
|
|
|
let root_t = builder.add_virtual_hash();
|
|
pw.set_hash_target(root_t, tree.root);
|
|
|
|
let i_c = builder.constant(F::from_canonical_usize(i));
|
|
let i_bits = builder.split_le(i_c, log_n);
|
|
|
|
let data = builder.add_virtual_targets(tree.leaves[i].len());
|
|
for j in 0..data.len() {
|
|
pw.set_target(data[j], tree.leaves[i][j]);
|
|
}
|
|
|
|
builder.verify_merkle_proof(data, &i_bits, root_t, &proof_t);
|
|
|
|
let data = builder.build();
|
|
let proof = data.prove(pw)?;
|
|
|
|
verify(proof, &data.verifier_only, &data.common)
|
|
}
|
|
}
|