plonky2/src/fri/recursive_verifier.rs
2021-07-15 10:13:13 +02:00

353 lines
14 KiB
Rust

use env_logger::builder;
use itertools::izip;
use crate::circuit_builder::CircuitBuilder;
use crate::circuit_data::CommonCircuitData;
use crate::field::extension_field::target::{flatten_target, ExtensionTarget};
use crate::field::extension_field::Extendable;
use crate::field::field::Field;
use crate::fri::FriConfig;
use crate::plonk_challenger::RecursiveChallenger;
use crate::plonk_common::PlonkPolynomials;
use crate::proof::{
FriInitialTreeProofTarget, FriProofTarget, FriQueryRoundTarget, HashTarget, OpeningSetTarget,
};
use crate::target::Target;
use crate::util::scaling::ReducingFactorTarget;
use crate::util::{log2_strict, reverse_index_bits_in_place};
impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
/// Computes P'(x^arity) from {P(x*g^i)}_(i=0..arity), where g is a `arity`-th root of unity
/// and P' is the FRI reduced polynomial.
fn compute_evaluation(
&mut self,
x: Target,
old_x_index: Target,
arity_bits: usize,
last_evals: &[ExtensionTarget<D>],
beta: ExtensionTarget<D>,
) -> ExtensionTarget<D> {
debug_assert_eq!(last_evals.len(), 1 << arity_bits);
let g = F::primitive_root_of_unity(arity_bits);
// The evaluation vector needs to be reordered first.
let mut evals = last_evals.to_vec();
reverse_index_bits_in_place(&mut evals);
let mut old_x_index_bits = self.split_le(old_x_index, arity_bits);
old_x_index_bits.reverse();
let evals = self.rotate_left_from_bits(&old_x_index_bits, &evals);
// The answer is gotten by interpolating {(x*g^i, P(x*g^i))} and evaluating at beta.
let points = g
.powers()
.map(|y| {
let yt = self.constant(y);
self.mul(x, yt)
})
.zip(evals)
.collect::<Vec<_>>();
self.interpolate(&points, beta)
}
fn fri_verify_proof_of_work(
&mut self,
proof: &FriProofTarget<D>,
challenger: &mut RecursiveChallenger,
config: &FriConfig,
) {
let mut inputs = challenger.get_hash(self).elements.to_vec();
inputs.push(proof.pow_witness);
let hash = self.hash_n_to_m(inputs, 1, false)[0];
self.assert_leading_zeros(hash, config.proof_of_work_bits + F::ORDER.leading_zeros());
}
pub fn verify_fri_proof(
&mut self,
purported_degree_log: usize,
// Openings of the PLONK polynomials.
os: &OpeningSetTarget<D>,
// Point at which the PLONK polynomials are opened.
zeta: ExtensionTarget<D>,
// Scaling factor to combine polynomials.
alpha: ExtensionTarget<D>,
initial_merkle_roots: &[HashTarget],
proof: &FriProofTarget<D>,
challenger: &mut RecursiveChallenger,
common_data: &CommonCircuitData<F, D>,
) {
let config = &common_data.config.fri_config;
let total_arities = config.reduction_arity_bits.iter().sum::<usize>();
debug_assert_eq!(
purported_degree_log,
log2_strict(proof.final_poly.len()) + total_arities - config.rate_bits,
"Final polynomial has wrong degree."
);
// Size of the LDE domain.
let n = proof.final_poly.len() << total_arities;
self.set_context("Recover the random betas used in the FRI reductions.");
let betas = proof
.commit_phase_merkle_roots
.iter()
.map(|root| {
challenger.observe_hash(root);
challenger.get_extension_challenge(self)
})
.collect::<Vec<_>>();
challenger.observe_extension_elements(&proof.final_poly.0);
self.set_context("Check PoW");
self.fri_verify_proof_of_work(proof, challenger, config);
// Check that parameters are coherent.
debug_assert_eq!(
config.num_query_rounds,
proof.query_round_proofs.len(),
"Number of query rounds does not match config."
);
debug_assert!(
!config.reduction_arity_bits.is_empty(),
"Number of reductions should be non-zero."
);
for round_proof in &proof.query_round_proofs {
self.fri_verifier_query_round(
os,
zeta,
alpha,
initial_merkle_roots,
&proof,
challenger,
n,
&betas,
round_proof,
common_data,
);
}
}
fn fri_verify_initial_proof(
&mut self,
x_index: Target,
proof: &FriInitialTreeProofTarget,
initial_merkle_roots: &[HashTarget],
) {
for (i, ((evals, merkle_proof), &root)) in proof
.evals_proofs
.iter()
.zip(initial_merkle_roots)
.enumerate()
{
self.set_context(&format!("Verify {}-th initial Merkle proof.", i));
self.verify_merkle_proof(evals.clone(), x_index, root, merkle_proof);
}
}
fn fri_combine_initial(
&mut self,
proof: &FriInitialTreeProofTarget,
alpha: ExtensionTarget<D>,
os: &OpeningSetTarget<D>,
zeta: ExtensionTarget<D>,
subgroup_x: Target,
common_data: &CommonCircuitData<F, D>,
) -> ExtensionTarget<D> {
assert!(D > 1, "Not implemented for D=1.");
let config = &self.config.fri_config.clone();
let degree_log = proof.evals_proofs[0].1.siblings.len() - config.rate_bits;
let subgroup_x = self.convert_to_ext(subgroup_x);
let mut alpha = ReducingFactorTarget::new(alpha);
let mut sum = self.zero_extension();
// We will add three terms to `sum`:
// - one for polynomials opened at `x` only
// - one for polynomials opened at `x` and `g x`
// - one for polynomials opened at `x` and `x.frobenius()`
// Polynomials opened at `x`, i.e., the constants, sigmas and quotient polynomials.
let single_evals = [
PlonkPolynomials::CONSTANTS_SIGMAS,
PlonkPolynomials::QUOTIENT,
]
.iter()
.flat_map(|&p| proof.unsalted_evals(p))
.chain(
&proof.unsalted_evals(PlonkPolynomials::ZS_PARTIAL_PRODUCTS)
[common_data.partial_products_range()],
)
.map(|&e| self.convert_to_ext(e))
.collect::<Vec<_>>();
let single_openings = os
.constants
.iter()
.chain(&os.plonk_sigmas)
.chain(&os.quotient_polys)
.chain(&os.partial_products)
.copied()
.collect::<Vec<_>>();
let mut single_numerator = alpha.reduce(&single_evals, self);
// TODO: Precompute the rhs as it is the same in all FRI rounds.
let rhs = alpha.reduce(&single_openings, self);
single_numerator = self.sub_extension(single_numerator, rhs);
let single_denominator = self.sub_extension(subgroup_x, zeta);
let quotient = self.div_unsafe_extension(single_numerator, single_denominator);
sum = self.add_extension(sum, quotient);
alpha.reset();
// Polynomials opened at `x` and `g x`, i.e., the Zs polynomials.
let zs_evals = proof
.unsalted_evals(PlonkPolynomials::ZS_PARTIAL_PRODUCTS)
.iter()
.take(common_data.zs_range().end)
.map(|&e| self.convert_to_ext(e))
.collect::<Vec<_>>();
let mut zs_composition_eval = alpha.clone().reduce(&zs_evals, self);
let g = self.constant_extension(F::Extension::primitive_root_of_unity(degree_log));
let zeta_right = self.mul_extension(g, zeta);
let zs_ev_zeta = alpha.clone().reduce(&os.plonk_zs, self);
let zs_ev_zeta_right = alpha.reduce(&os.plonk_zs_right, self);
let interpol_val = self.interpolate2(
[(zeta, zs_ev_zeta), (zeta_right, zs_ev_zeta_right)],
subgroup_x,
);
let zs_numerator = self.sub_extension(zs_composition_eval, interpol_val);
let vanish_zeta = self.sub_extension(subgroup_x, zeta);
let vanish_zeta_right = self.sub_extension(subgroup_x, zeta_right);
let zs_denominator = self.mul_extension(vanish_zeta, vanish_zeta_right);
let zs_quotient = self.div_unsafe_extension(zs_numerator, zs_denominator);
sum = alpha.shift(sum, self);
sum = self.add_extension(sum, zs_quotient);
// Polynomials opened at `x` and `x.frobenius()`, i.e., the wires polynomials.
let wire_evals = proof
.unsalted_evals(PlonkPolynomials::WIRES)
.iter()
.map(|&e| self.convert_to_ext(e))
.collect::<Vec<_>>();
let mut wire_composition_eval = alpha.clone().reduce(&wire_evals, self);
let mut alpha_frob = alpha.repeated_frobenius(D - 1, self);
let wire_eval = alpha.reduce(&os.wires, self);
let wire_eval_frob = alpha_frob.reduce(&os.wires, self);
let wire_eval_frob = wire_eval_frob.frobenius(self);
let zeta_frob = zeta.frobenius(self);
let wire_interpol_val =
self.interpolate2([(zeta, wire_eval), (zeta_frob, wire_eval_frob)], subgroup_x);
let wire_numerator = self.sub_extension(wire_composition_eval, wire_interpol_val);
let vanish_zeta_frob = self.sub_extension(subgroup_x, zeta_frob);
let wire_denominator = self.mul_extension(vanish_zeta, vanish_zeta_frob);
let wire_quotient = self.div_unsafe_extension(wire_numerator, wire_denominator);
sum = alpha.shift(sum, self);
sum = self.add_extension(sum, wire_quotient);
sum
}
fn fri_verifier_query_round(
&mut self,
os: &OpeningSetTarget<D>,
zeta: ExtensionTarget<D>,
alpha: ExtensionTarget<D>,
initial_merkle_roots: &[HashTarget],
proof: &FriProofTarget<D>,
challenger: &mut RecursiveChallenger,
n: usize,
betas: &[ExtensionTarget<D>],
round_proof: &FriQueryRoundTarget<D>,
common_data: &CommonCircuitData<F, D>,
) {
let config = &common_data.config.fri_config;
let n_log = log2_strict(n);
let mut evaluations: Vec<Vec<ExtensionTarget<D>>> = Vec::new();
// TODO: Do we need to range check `x_index` to a target smaller than `p`?
let mut x_index = challenger.get_challenge(self);
x_index = self.split_low_high(x_index, n_log, 64).0;
let mut x_index_num_bits = n_log;
let mut domain_size = n;
self.set_context("Check FRI initial proof.");
self.fri_verify_initial_proof(
x_index,
&round_proof.initial_trees_proof,
initial_merkle_roots,
);
let mut old_x_index = self.zero();
// `subgroup_x` is `subgroup[x_index]`, i.e., the actual field element in the domain.
let g = self.constant(F::MULTIPLICATIVE_GROUP_GENERATOR);
let phi = self.constant(F::primitive_root_of_unity(n_log));
let reversed_x = self.reverse_limbs::<2>(x_index, n_log);
let phi = self.exp(phi, reversed_x, n_log);
let mut subgroup_x = self.mul(g, phi);
for (i, &arity_bits) in config.reduction_arity_bits.iter().enumerate() {
let next_domain_size = domain_size >> arity_bits;
let e_x = if i == 0 {
self.fri_combine_initial(
&round_proof.initial_trees_proof,
alpha,
os,
zeta,
subgroup_x,
common_data,
)
} else {
let last_evals = &evaluations[i - 1];
// Infer P(y) from {P(x)}_{x^arity=y}.
self.compute_evaluation(
subgroup_x,
old_x_index,
config.reduction_arity_bits[i - 1],
last_evals,
betas[i - 1],
)
};
let mut evals = round_proof.steps[i].evals.clone();
// Insert P(y) into the evaluation vector, since it wasn't included by the prover.
let (low_x_index, high_x_index) =
self.split_low_high(x_index, arity_bits, x_index_num_bits);
evals = self.insert(low_x_index, e_x, evals);
evaluations.push(evals);
self.set_context("Verify FRI round Merkle proof.");
self.verify_merkle_proof(
flatten_target(&evaluations[i]),
high_x_index,
proof.commit_phase_merkle_roots[i],
&round_proof.steps[i].merkle_proof,
);
if i > 0 {
// Update the point x to x^arity.
for _ in 0..config.reduction_arity_bits[i - 1] {
subgroup_x = self.square(subgroup_x);
}
}
domain_size = next_domain_size;
old_x_index = low_x_index;
x_index = high_x_index;
x_index_num_bits -= arity_bits;
}
let last_evals = evaluations.last().unwrap();
let final_arity_bits = *config.reduction_arity_bits.last().unwrap();
let purported_eval = self.compute_evaluation(
subgroup_x,
old_x_index,
final_arity_bits,
last_evals,
*betas.last().unwrap(),
);
for _ in 0..final_arity_bits {
subgroup_x = self.square(subgroup_x);
}
// Final check of FRI. After all the reductions, we check that the final polynomial is equal
// to the one sent by the prover.
let eval = proof.final_poly.eval_scalar(self, subgroup_x);
self.assert_equal_extension(eval, purported_eval);
}
}