plonky2/src/iop/challenger.rs
2021-12-16 15:20:45 +01:00

401 lines
13 KiB
Rust

use std::convert::TryInto;
use std::marker::PhantomData;
use crate::field::extension_field::target::ExtensionTarget;
use crate::field::extension_field::{Extendable, FieldExtension};
use crate::field::field_types::RichField;
use crate::hash::hash_types::{HashOut, HashOutTarget, MerkleCapTarget};
use crate::hash::hashing::{PlonkyPermutation, SPONGE_RATE, SPONGE_WIDTH};
use crate::hash::merkle_tree::MerkleCap;
use crate::iop::target::Target;
use crate::plonk::circuit_builder::CircuitBuilder;
use crate::plonk::config::{AlgebraicHasher, Hasher};
use crate::plonk::proof::{OpeningSet, OpeningSetTarget};
/// Observes prover messages, and generates challenges by hashing the transcript, a la Fiat-Shamir.
#[derive(Clone)]
pub struct Challenger<F: RichField, H: AlgebraicHasher<F>> {
sponge_state: [F; SPONGE_WIDTH],
input_buffer: Vec<F>,
output_buffer: Vec<F>,
_phantom: PhantomData<H>,
}
/// Observes prover messages, and generates verifier challenges based on the transcript.
///
/// The implementation is roughly based on a duplex sponge with a Rescue permutation. Note that in
/// each round, our sponge can absorb an arbitrary number of prover messages and generate an
/// arbitrary number of verifier challenges. This might appear to diverge from the duplex sponge
/// design, but it can be viewed as a duplex sponge whose inputs are sometimes zero (when we perform
/// multiple squeezes) and whose outputs are sometimes ignored (when we perform multiple
/// absorptions). Thus the security properties of a duplex sponge still apply to our design.
impl<F: RichField, H: AlgebraicHasher<F>> Challenger<F, H> {
pub fn new() -> Challenger<F, H> {
Challenger {
sponge_state: [F::ZERO; SPONGE_WIDTH],
input_buffer: Vec::new(),
output_buffer: Vec::new(),
_phantom: Default::default(),
}
}
pub fn observe_element(&mut self, element: F) {
// Any buffered outputs are now invalid, since they wouldn't reflect this input.
self.output_buffer.clear();
self.input_buffer.push(element);
}
pub fn observe_extension_element<const D: usize>(&mut self, element: &F::Extension)
where
F: Extendable<D>,
{
self.observe_elements(&element.to_basefield_array());
}
pub fn observe_elements(&mut self, elements: &[F]) {
for &element in elements {
self.observe_element(element);
}
}
pub fn observe_extension_elements<const D: usize>(&mut self, elements: &[F::Extension])
where
F: Extendable<D>,
{
for element in elements {
self.observe_extension_element(element);
}
}
pub fn observe_opening_set<const D: usize>(&mut self, os: &OpeningSet<F, D>)
where
F: Extendable<D>,
{
let OpeningSet {
constants,
plonk_sigmas,
wires,
plonk_zs,
plonk_zs_right,
partial_products,
quotient_polys,
} = os;
for v in &[
constants,
plonk_sigmas,
wires,
plonk_zs,
plonk_zs_right,
partial_products,
quotient_polys,
] {
self.observe_extension_elements(v);
}
}
pub fn observe_hash<OH: Hasher<F>>(&mut self, hash: OH::Hash) {
let felts: Vec<F> = hash.into();
self.observe_elements(&felts)
}
pub fn observe_cap<OH: Hasher<F>>(&mut self, cap: &MerkleCap<F, OH>) {
for &hash in &cap.0 {
self.observe_hash::<OH>(hash);
}
}
pub fn get_challenge(&mut self) -> F {
self.absorb_buffered_inputs();
if self.output_buffer.is_empty() {
// Evaluate the permutation to produce `r` new outputs.
self.sponge_state = H::Permutation::permute(self.sponge_state);
self.output_buffer = self.sponge_state[0..SPONGE_RATE].to_vec();
}
self.output_buffer
.pop()
.expect("Output buffer should be non-empty")
}
pub fn get_n_challenges(&mut self, n: usize) -> Vec<F> {
(0..n).map(|_| self.get_challenge()).collect()
}
pub fn get_hash(&mut self) -> HashOut<F> {
HashOut {
elements: [
self.get_challenge(),
self.get_challenge(),
self.get_challenge(),
self.get_challenge(),
],
}
}
pub fn get_extension_challenge<const D: usize>(&mut self) -> F::Extension
where
F: Extendable<D>,
{
let mut arr = [F::ZERO; D];
arr.copy_from_slice(&self.get_n_challenges(D));
F::Extension::from_basefield_array(arr)
}
pub fn get_n_extension_challenges<const D: usize>(&mut self, n: usize) -> Vec<F::Extension>
where
F: Extendable<D>,
{
(0..n)
.map(|_| self.get_extension_challenge::<D>())
.collect()
}
/// Absorb any buffered inputs. After calling this, the input buffer will be empty.
fn absorb_buffered_inputs(&mut self) {
if self.input_buffer.is_empty() {
return;
}
for input_chunk in self.input_buffer.chunks(SPONGE_RATE) {
// Overwrite the first r elements with the inputs. This differs from a standard sponge,
// where we would xor or add in the inputs. This is a well-known variant, though,
// sometimes called "overwrite mode".
for (i, &input) in input_chunk.iter().enumerate() {
self.sponge_state[i] = input;
}
// Apply the permutation.
self.sponge_state = H::Permutation::permute(self.sponge_state);
}
self.output_buffer = self.sponge_state[0..SPONGE_RATE].to_vec();
self.input_buffer.clear();
}
}
impl<F: RichField, H: AlgebraicHasher<F>> Default for Challenger<F, H> {
fn default() -> Self {
Self::new()
}
}
/// A recursive version of `Challenger`.
pub struct RecursiveChallenger<F: Extendable<D>, H: AlgebraicHasher<F>, const D: usize> {
sponge_state: [Target; SPONGE_WIDTH],
input_buffer: Vec<Target>,
output_buffer: Vec<Target>,
}
impl<F: Extendable<D>, H: AlgebraicHasher<F>, const D: usize> RecursiveChallenger<F, H, D> {
pub(crate) fn new(builder: &mut CircuitBuilder<F, D>) -> Self {
let zero = builder.zero();
RecursiveChallenger {
sponge_state: [zero; SPONGE_WIDTH],
input_buffer: Vec::new(),
output_buffer: Vec::new(),
}
}
pub(crate) fn observe_element(&mut self, target: Target) {
// Any buffered outputs are now invalid, since they wouldn't reflect this input.
self.output_buffer.clear();
self.input_buffer.push(target);
}
pub(crate) fn observe_elements(&mut self, targets: &[Target]) {
for &target in targets {
self.observe_element(target);
}
}
pub fn observe_opening_set(&mut self, os: &OpeningSetTarget<D>) {
let OpeningSetTarget {
constants,
plonk_sigmas,
wires,
plonk_zs,
plonk_zs_right,
partial_products,
quotient_polys,
} = os;
for v in &[
constants,
plonk_sigmas,
wires,
plonk_zs,
plonk_zs_right,
partial_products,
quotient_polys,
] {
self.observe_extension_elements(v);
}
}
pub fn observe_hash(&mut self, hash: &HashOutTarget) {
self.observe_elements(&hash.elements)
}
pub fn observe_cap(&mut self, cap: &MerkleCapTarget) {
for hash in &cap.0 {
self.observe_hash(hash)
}
}
pub fn observe_extension_element(&mut self, element: ExtensionTarget<D>) {
self.observe_elements(&element.0);
}
pub fn observe_extension_elements(&mut self, elements: &[ExtensionTarget<D>]) {
for &element in elements {
self.observe_extension_element(element);
}
}
pub(crate) fn get_challenge(&mut self, builder: &mut CircuitBuilder<F, D>) -> Target {
self.absorb_buffered_inputs(builder);
if self.output_buffer.is_empty() {
// Evaluate the permutation to produce `r` new outputs.
self.sponge_state = builder.permute::<H>(self.sponge_state);
self.output_buffer = self.sponge_state[0..SPONGE_RATE].to_vec();
}
self.output_buffer
.pop()
.expect("Output buffer should be non-empty")
}
pub(crate) fn get_n_challenges(
&mut self,
builder: &mut CircuitBuilder<F, D>,
n: usize,
) -> Vec<Target> {
(0..n).map(|_| self.get_challenge(builder)).collect()
}
pub fn get_hash(&mut self, builder: &mut CircuitBuilder<F, D>) -> HashOutTarget {
HashOutTarget {
elements: [
self.get_challenge(builder),
self.get_challenge(builder),
self.get_challenge(builder),
self.get_challenge(builder),
],
}
}
pub fn get_extension_challenge(
&mut self,
builder: &mut CircuitBuilder<F, D>,
) -> ExtensionTarget<D> {
self.get_n_challenges(builder, D).try_into().unwrap()
}
/// Absorb any buffered inputs. After calling this, the input buffer will be empty.
fn absorb_buffered_inputs(&mut self, builder: &mut CircuitBuilder<F, D>) {
if self.input_buffer.is_empty() {
return;
}
for input_chunk in self.input_buffer.chunks(SPONGE_RATE) {
// Overwrite the first r elements with the inputs. This differs from a standard sponge,
// where we would xor or add in the inputs. This is a well-known variant, though,
// sometimes called "overwrite mode".
for (i, &input) in input_chunk.iter().enumerate() {
self.sponge_state[i] = input;
}
// Apply the permutation.
self.sponge_state = builder.permute::<H>(self.sponge_state);
}
self.output_buffer = self.sponge_state[0..SPONGE_RATE].to_vec();
self.input_buffer.clear();
}
}
#[cfg(test)]
mod tests {
use crate::field::field_types::Field;
use crate::iop::challenger::{Challenger, RecursiveChallenger};
use crate::iop::generator::generate_partial_witness;
use crate::iop::target::Target;
use crate::iop::witness::{PartialWitness, Witness};
use crate::plonk::circuit_builder::CircuitBuilder;
use crate::plonk::circuit_data::CircuitConfig;
use crate::plonk::config::{GenericConfig, PoseidonGoldilocksConfig};
#[test]
fn no_duplicate_challenges() {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
let mut challenger = Challenger::<F, <C as GenericConfig<D>>::InnerHasher>::new();
let mut challenges = Vec::new();
for i in 1..10 {
challenges.extend(challenger.get_n_challenges(i));
challenger.observe_element(F::rand());
}
let dedup_challenges = {
let mut dedup = challenges.clone();
dedup.dedup();
dedup
};
assert_eq!(dedup_challenges, challenges);
}
/// Tests for consistency between `Challenger` and `RecursiveChallenger`.
#[test]
fn test_consistency() {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
// These are mostly arbitrary, but we want to test some rounds with enough inputs/outputs to
// trigger multiple absorptions/squeezes.
let num_inputs_per_round = vec![2, 5, 3];
let num_outputs_per_round = vec![1, 2, 4];
// Generate random input messages.
let inputs_per_round: Vec<Vec<F>> = num_inputs_per_round
.iter()
.map(|&n| F::rand_vec(n))
.collect();
let mut challenger = Challenger::<F, <C as GenericConfig<D>>::InnerHasher>::new();
let mut outputs_per_round: Vec<Vec<F>> = Vec::new();
for (r, inputs) in inputs_per_round.iter().enumerate() {
challenger.observe_elements(inputs);
outputs_per_round.push(challenger.get_n_challenges(num_outputs_per_round[r]));
}
let config = CircuitConfig::standard_recursion_config();
let mut builder = CircuitBuilder::<F, D>::new(config);
let mut recursive_challenger =
RecursiveChallenger::<F, <C as GenericConfig<D>>::InnerHasher, D>::new(&mut builder);
let mut recursive_outputs_per_round: Vec<Vec<Target>> = Vec::new();
for (r, inputs) in inputs_per_round.iter().enumerate() {
recursive_challenger.observe_elements(&builder.constants(inputs));
recursive_outputs_per_round.push(
recursive_challenger.get_n_challenges(&mut builder, num_outputs_per_round[r]),
);
}
let circuit = builder.build::<C>();
let inputs = PartialWitness::new();
let witness = generate_partial_witness(inputs, &circuit.prover_only, &circuit.common);
let recursive_output_values_per_round: Vec<Vec<F>> = recursive_outputs_per_round
.iter()
.map(|outputs| witness.get_targets(outputs))
.collect();
assert_eq!(outputs_per_round, recursive_output_values_per_round);
}
}