plonky2/src/hash/merkle_proofs.rs
2021-12-16 15:20:45 +01:00

188 lines
6.4 KiB
Rust

use anyhow::{ensure, Result};
use serde::{Deserialize, Serialize};
use crate::field::extension_field::Extendable;
use crate::field::field_types::RichField;
use crate::hash::hash_types::{HashOutTarget, MerkleCapTarget};
use crate::hash::hashing::SPONGE_WIDTH;
use crate::hash::merkle_tree::MerkleCap;
use crate::iop::target::{BoolTarget, Target};
use crate::plonk::circuit_builder::CircuitBuilder;
use crate::plonk::config::{AlgebraicHasher, Hasher};
#[derive(Clone, Debug, Serialize, Deserialize, Eq, PartialEq)]
#[serde(bound = "")]
pub struct MerkleProof<F: RichField, H: Hasher<F>> {
/// The Merkle digest of each sibling subtree, staying from the bottommost layer.
pub siblings: Vec<H::Hash>,
}
#[derive(Clone)]
pub struct MerkleProofTarget {
/// The Merkle digest of each sibling subtree, staying from the bottommost layer.
pub siblings: Vec<HashOutTarget>,
}
/// Verifies that the given leaf data is present at the given index in the Merkle tree with the
/// given cap.
pub(crate) fn verify_merkle_proof<F: RichField, H: Hasher<F>>(
leaf_data: Vec<F>,
leaf_index: usize,
merkle_cap: &MerkleCap<F, H>,
proof: &MerkleProof<F, H>,
) -> Result<()> {
let mut index = leaf_index;
let mut current_digest = H::hash(leaf_data, false);
for &sibling_digest in proof.siblings.iter() {
let bit = index & 1;
index >>= 1;
current_digest = if bit == 1 {
H::two_to_one(sibling_digest, current_digest)
} else {
H::two_to_one(current_digest, sibling_digest)
}
}
ensure!(
current_digest == merkle_cap.0[index],
"Invalid Merkle proof."
);
Ok(())
}
impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
/// Verifies that the given leaf data is present at the given index in the Merkle tree with the
/// given cap. The index is given by it's little-endian bits.
#[cfg(test)]
pub(crate) fn verify_merkle_proof<H: AlgebraicHasher<F>>(
&mut self,
leaf_data: Vec<Target>,
leaf_index_bits: &[BoolTarget],
merkle_cap: &MerkleCapTarget,
proof: &MerkleProofTarget,
) {
let zero = self.zero();
let mut state: HashOutTarget = self.hash_or_noop::<H>(leaf_data);
for (&bit, &sibling) in leaf_index_bits.iter().zip(&proof.siblings) {
let mut perm_inputs = [zero; SPONGE_WIDTH];
perm_inputs[..4].copy_from_slice(&state.elements);
perm_inputs[4..8].copy_from_slice(&sibling.elements);
let outputs = self.permute_swapped::<H>(perm_inputs, bit);
state = HashOutTarget::from_vec(outputs[0..4].to_vec());
}
let index = self.le_sum(leaf_index_bits[proof.siblings.len()..].to_vec().into_iter());
for i in 0..4 {
self.random_access(
index,
state.elements[i],
merkle_cap.0.iter().map(|h| h.elements[i]).collect(),
);
}
}
/// Same as `verify_merkle_proof` but with the final "cap index" as extra parameter.
pub(crate) fn verify_merkle_proof_with_cap_index<H: AlgebraicHasher<F>>(
&mut self,
leaf_data: Vec<Target>,
leaf_index_bits: &[BoolTarget],
cap_index: Target,
merkle_cap: &MerkleCapTarget,
proof: &MerkleProofTarget,
) {
let zero = self.zero();
let mut state: HashOutTarget = self.hash_or_noop::<H>(leaf_data);
for (&bit, &sibling) in leaf_index_bits.iter().zip(&proof.siblings) {
let mut perm_inputs = [zero; SPONGE_WIDTH];
perm_inputs[..4].copy_from_slice(&state.elements);
perm_inputs[4..8].copy_from_slice(&sibling.elements);
let perm_outs = self.permute_swapped::<H>(perm_inputs, bit);
let hash_outs = perm_outs[0..4].try_into().unwrap();
state = HashOutTarget {
elements: hash_outs,
};
}
for i in 0..4 {
self.random_access(
cap_index,
state.elements[i],
merkle_cap.0.iter().map(|h| h.elements[i]).collect(),
);
}
}
pub fn connect_hashes(&mut self, x: HashOutTarget, y: HashOutTarget) {
for i in 0..4 {
self.connect(x.elements[i], y.elements[i]);
}
}
}
#[cfg(test)]
mod tests {
use anyhow::Result;
use rand::{thread_rng, Rng};
use super::*;
use crate::field::field_types::Field;
use crate::hash::merkle_tree::MerkleTree;
use crate::iop::witness::{PartialWitness, Witness};
use crate::plonk::circuit_builder::CircuitBuilder;
use crate::plonk::circuit_data::CircuitConfig;
use crate::plonk::config::{GenericConfig, PoseidonGoldilocksConfig};
use crate::plonk::verifier::verify;
fn random_data<F: Field>(n: usize, k: usize) -> Vec<Vec<F>> {
(0..n).map(|_| F::rand_vec(k)).collect()
}
#[test]
fn test_recursive_merkle_proof() -> Result<()> {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
let config = CircuitConfig::standard_recursion_config();
let mut pw = PartialWitness::new();
let mut builder = CircuitBuilder::<F, D>::new(config);
let log_n = 8;
let n = 1 << log_n;
let cap_height = 1;
let leaves = random_data::<F>(n, 7);
let tree = MerkleTree::<F, <C as GenericConfig<D>>::Hasher>::new(leaves, cap_height);
let i: usize = thread_rng().gen_range(0..n);
let proof = tree.prove(i);
let proof_t = MerkleProofTarget {
siblings: builder.add_virtual_hashes(proof.siblings.len()),
};
for i in 0..proof.siblings.len() {
pw.set_hash_target(proof_t.siblings[i], proof.siblings[i]);
}
let cap_t = builder.add_virtual_cap(cap_height);
pw.set_cap_target(&cap_t, &tree.cap);
let i_c = builder.constant(F::from_canonical_usize(i));
let i_bits = builder.split_le(i_c, log_n);
let data = builder.add_virtual_targets(tree.leaves[i].len());
for j in 0..data.len() {
pw.set_target(data[j], tree.leaves[i][j]);
}
builder.verify_merkle_proof::<<C as GenericConfig<D>>::InnerHasher>(
data, &i_bits, &cap_t, &proof_t,
);
let data = builder.build::<C>();
let proof = data.prove(pw)?;
verify(proof, &data.verifier_only, &data.common)
}
}