mirror of
https://github.com/logos-storage/plonky2.git
synced 2026-01-27 10:03:08 +00:00
These appear to be unused for extension fields, so we're free to change the mapping without breaking anything. As the TODO says, the mapping that's currently implemented doesn't seem natural or useful. It seems more natural to treat the `BigUint` as a base field element, potentially in a non-canonical form.
264 lines
7.2 KiB
Rust
264 lines
7.2 KiB
Rust
use std::fmt::{Debug, Display, Formatter};
|
|
use std::iter::{Product, Sum};
|
|
use std::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};
|
|
|
|
use num::bigint::BigUint;
|
|
use num::traits::Pow;
|
|
use serde::{Deserialize, Serialize};
|
|
|
|
use crate::extension::{Extendable, FieldExtension, Frobenius, OEF};
|
|
use crate::ops::Square;
|
|
use crate::types::Field;
|
|
|
|
#[derive(Copy, Clone, Eq, PartialEq, Hash, Serialize, Deserialize)]
|
|
#[serde(bound = "")]
|
|
pub struct QuarticExtension<F: Extendable<4>>(pub [F; 4]);
|
|
|
|
impl<F: Extendable<4>> Default for QuarticExtension<F> {
|
|
fn default() -> Self {
|
|
Self::ZERO
|
|
}
|
|
}
|
|
|
|
impl<F: Extendable<4>> OEF<4> for QuarticExtension<F> {
|
|
const W: F = F::W;
|
|
const DTH_ROOT: F = F::DTH_ROOT;
|
|
}
|
|
|
|
impl<F: Extendable<4>> Frobenius<4> for QuarticExtension<F> {}
|
|
|
|
impl<F: Extendable<4>> FieldExtension<4> for QuarticExtension<F> {
|
|
type BaseField = F;
|
|
|
|
fn to_basefield_array(&self) -> [F; 4] {
|
|
self.0
|
|
}
|
|
|
|
fn from_basefield_array(arr: [F; 4]) -> Self {
|
|
Self(arr)
|
|
}
|
|
|
|
fn from_basefield(x: F) -> Self {
|
|
x.into()
|
|
}
|
|
}
|
|
|
|
impl<F: Extendable<4>> From<F> for QuarticExtension<F> {
|
|
fn from(x: F) -> Self {
|
|
Self([x, F::ZERO, F::ZERO, F::ZERO])
|
|
}
|
|
}
|
|
|
|
impl<F: Extendable<4>> Field for QuarticExtension<F> {
|
|
const ZERO: Self = Self([F::ZERO; 4]);
|
|
const ONE: Self = Self([F::ONE, F::ZERO, F::ZERO, F::ZERO]);
|
|
const TWO: Self = Self([F::TWO, F::ZERO, F::ZERO, F::ZERO]);
|
|
const NEG_ONE: Self = Self([F::NEG_ONE, F::ZERO, F::ZERO, F::ZERO]);
|
|
|
|
// `p^4 - 1 = (p - 1)(p + 1)(p^2 + 1)`. The `p - 1` term has a two-adicity of `F::TWO_ADICITY`.
|
|
// As long as `F::TWO_ADICITY >= 2`, `p` can be written as `4n + 1`, so `p + 1` can be written as
|
|
// `2(2n + 1)`, which has a 2-adicity of 1. A similar argument can show that `p^2 + 1` also has
|
|
// a 2-adicity of 1.
|
|
const TWO_ADICITY: usize = F::TWO_ADICITY + 2;
|
|
const CHARACTERISTIC_TWO_ADICITY: usize = F::CHARACTERISTIC_TWO_ADICITY;
|
|
|
|
const MULTIPLICATIVE_GROUP_GENERATOR: Self = Self(F::EXT_MULTIPLICATIVE_GROUP_GENERATOR);
|
|
const POWER_OF_TWO_GENERATOR: Self = Self(F::EXT_POWER_OF_TWO_GENERATOR);
|
|
|
|
const BITS: usize = F::BITS * 4;
|
|
|
|
fn order() -> BigUint {
|
|
F::order().pow(4u32)
|
|
}
|
|
fn characteristic() -> BigUint {
|
|
F::characteristic()
|
|
}
|
|
|
|
// Algorithm 11.3.4 in Handbook of Elliptic and Hyperelliptic Curve Cryptography.
|
|
fn try_inverse(&self) -> Option<Self> {
|
|
if self.is_zero() {
|
|
return None;
|
|
}
|
|
|
|
let a_pow_p = self.frobenius();
|
|
let a_pow_p_plus_1 = a_pow_p * *self;
|
|
let a_pow_p3_plus_p2 = a_pow_p_plus_1.repeated_frobenius(2);
|
|
let a_pow_r_minus_1 = a_pow_p3_plus_p2 * a_pow_p;
|
|
let a_pow_r = a_pow_r_minus_1 * *self;
|
|
debug_assert!(FieldExtension::<4>::is_in_basefield(&a_pow_r));
|
|
|
|
Some(FieldExtension::<4>::scalar_mul(
|
|
&a_pow_r_minus_1,
|
|
a_pow_r.0[0].inverse(),
|
|
))
|
|
}
|
|
|
|
fn from_noncanonical_biguint(n: BigUint) -> Self {
|
|
F::from_noncanonical_biguint(n).into()
|
|
}
|
|
|
|
fn from_canonical_u64(n: u64) -> Self {
|
|
F::from_canonical_u64(n).into()
|
|
}
|
|
|
|
fn from_noncanonical_u128(n: u128) -> Self {
|
|
F::from_noncanonical_u128(n).into()
|
|
}
|
|
|
|
#[cfg(feature = "rand")]
|
|
fn rand_from_rng<R: rand::Rng>(rng: &mut R) -> Self {
|
|
Self::from_basefield_array([
|
|
F::rand_from_rng(rng),
|
|
F::rand_from_rng(rng),
|
|
F::rand_from_rng(rng),
|
|
F::rand_from_rng(rng),
|
|
])
|
|
}
|
|
}
|
|
|
|
impl<F: Extendable<4>> Display for QuarticExtension<F> {
|
|
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
|
|
write!(
|
|
f,
|
|
"{} + {}*a + {}*a^2 + {}*a^3",
|
|
self.0[0], self.0[1], self.0[2], self.0[3]
|
|
)
|
|
}
|
|
}
|
|
|
|
impl<F: Extendable<4>> Debug for QuarticExtension<F> {
|
|
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
|
|
Display::fmt(self, f)
|
|
}
|
|
}
|
|
|
|
impl<F: Extendable<4>> Neg for QuarticExtension<F> {
|
|
type Output = Self;
|
|
|
|
#[inline]
|
|
fn neg(self) -> Self {
|
|
Self([-self.0[0], -self.0[1], -self.0[2], -self.0[3]])
|
|
}
|
|
}
|
|
|
|
impl<F: Extendable<4>> Add for QuarticExtension<F> {
|
|
type Output = Self;
|
|
|
|
#[inline]
|
|
fn add(self, rhs: Self) -> Self {
|
|
Self([
|
|
self.0[0] + rhs.0[0],
|
|
self.0[1] + rhs.0[1],
|
|
self.0[2] + rhs.0[2],
|
|
self.0[3] + rhs.0[3],
|
|
])
|
|
}
|
|
}
|
|
|
|
impl<F: Extendable<4>> AddAssign for QuarticExtension<F> {
|
|
fn add_assign(&mut self, rhs: Self) {
|
|
*self = *self + rhs;
|
|
}
|
|
}
|
|
|
|
impl<F: Extendable<4>> Sum for QuarticExtension<F> {
|
|
fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
|
|
iter.fold(Self::ZERO, |acc, x| acc + x)
|
|
}
|
|
}
|
|
|
|
impl<F: Extendable<4>> Sub for QuarticExtension<F> {
|
|
type Output = Self;
|
|
|
|
#[inline]
|
|
fn sub(self, rhs: Self) -> Self {
|
|
Self([
|
|
self.0[0] - rhs.0[0],
|
|
self.0[1] - rhs.0[1],
|
|
self.0[2] - rhs.0[2],
|
|
self.0[3] - rhs.0[3],
|
|
])
|
|
}
|
|
}
|
|
|
|
impl<F: Extendable<4>> SubAssign for QuarticExtension<F> {
|
|
#[inline]
|
|
fn sub_assign(&mut self, rhs: Self) {
|
|
*self = *self - rhs;
|
|
}
|
|
}
|
|
|
|
impl<F: Extendable<4>> Mul for QuarticExtension<F> {
|
|
type Output = Self;
|
|
|
|
#[inline]
|
|
default fn mul(self, rhs: Self) -> Self {
|
|
let Self([a0, a1, a2, a3]) = self;
|
|
let Self([b0, b1, b2, b3]) = rhs;
|
|
|
|
let c0 = a0 * b0 + <Self as OEF<4>>::W * (a1 * b3 + a2 * b2 + a3 * b1);
|
|
let c1 = a0 * b1 + a1 * b0 + <Self as OEF<4>>::W * (a2 * b3 + a3 * b2);
|
|
let c2 = a0 * b2 + a1 * b1 + a2 * b0 + <Self as OEF<4>>::W * a3 * b3;
|
|
let c3 = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0;
|
|
|
|
Self([c0, c1, c2, c3])
|
|
}
|
|
}
|
|
|
|
impl<F: Extendable<4>> MulAssign for QuarticExtension<F> {
|
|
#[inline]
|
|
fn mul_assign(&mut self, rhs: Self) {
|
|
*self = *self * rhs;
|
|
}
|
|
}
|
|
|
|
impl<F: Extendable<4>> Square for QuarticExtension<F> {
|
|
#[inline(always)]
|
|
fn square(&self) -> Self {
|
|
let Self([a0, a1, a2, a3]) = *self;
|
|
let w = <Self as OEF<4>>::W;
|
|
|
|
let c0 = a0.square() + w * (a1 * a3.double() + a2.square());
|
|
let c1 = (a0 * a1 + w * a2 * a3).double();
|
|
let c2 = a0 * a2.double() + a1.square() + w * a3.square();
|
|
let c3 = (a0 * a3 + a1 * a2).double();
|
|
|
|
Self([c0, c1, c2, c3])
|
|
}
|
|
}
|
|
|
|
impl<F: Extendable<4>> Product for QuarticExtension<F> {
|
|
fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
|
|
iter.fold(Self::ONE, |acc, x| acc * x)
|
|
}
|
|
}
|
|
|
|
impl<F: Extendable<4>> Div for QuarticExtension<F> {
|
|
type Output = Self;
|
|
|
|
#[allow(clippy::suspicious_arithmetic_impl)]
|
|
fn div(self, rhs: Self) -> Self::Output {
|
|
self * rhs.inverse()
|
|
}
|
|
}
|
|
|
|
impl<F: Extendable<4>> DivAssign for QuarticExtension<F> {
|
|
fn div_assign(&mut self, rhs: Self) {
|
|
*self = *self / rhs;
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
mod goldilocks {
|
|
use crate::{test_field_arithmetic, test_field_extension};
|
|
|
|
test_field_extension!(crate::goldilocks_field::GoldilocksField, 4);
|
|
test_field_arithmetic!(
|
|
crate::extension::quartic::QuarticExtension<
|
|
crate::goldilocks_field::GoldilocksField,
|
|
>
|
|
);
|
|
}
|
|
}
|