plonky2/src/polynomial/commitment.rs
2021-05-05 18:23:59 +02:00

242 lines
7.2 KiB
Rust

use crate::field::field::Field;
use crate::field::lagrange::interpolant;
use crate::fri::{prover::fri_proof, verifier::verify_fri_proof, FriConfig};
use crate::merkle_tree::MerkleTree;
use crate::plonk_challenger::Challenger;
use crate::plonk_common::reduce_with_powers;
use crate::polynomial::old_polynomial::Polynomial;
use crate::polynomial::polynomial::PolynomialCoeffs;
use crate::proof::{FriProof, Hash};
use crate::util::{log2_strict, reverse_index_bits_in_place, transpose};
use anyhow::Result;
struct ListPolynomialCommitment<F: Field> {
pub polynomials: Vec<PolynomialCoeffs<F>>,
pub fri_config: FriConfig,
pub merkle_tree: MerkleTree<F>,
pub degree: usize,
}
impl<F: Field> ListPolynomialCommitment<F> {
pub fn new(polynomials: Vec<PolynomialCoeffs<F>>, fri_config: &FriConfig) -> Self {
let degree = polynomials[0].len();
let lde_values = polynomials
.iter()
.map(|p| {
assert_eq!(p.len(), degree, "Polynomial degree invalid.");
p.clone()
.lde(fri_config.rate_bits)
.coset_fft(F::MULTIPLICATIVE_GROUP_GENERATOR)
.values
})
.chain(fri_config.blinding.then(|| {
(0..(degree << fri_config.rate_bits))
.map(|_| F::rand())
.collect()
}))
.collect::<Vec<_>>();
let mut leaves = transpose(&lde_values);
reverse_index_bits_in_place(&mut leaves);
let merkle_tree = MerkleTree::new(leaves, false);
Self {
polynomials,
fri_config: fri_config.clone(),
merkle_tree,
degree,
}
}
pub fn open(&self, points: &[F], challenger: &mut Challenger<F>) -> OpeningProof<F> {
for p in points {
assert_ne!(
p.exp_usize(self.degree),
F::ONE,
"Opening point is in the subgroup."
);
}
let evaluations = points
.iter()
.map(|&x| {
self.polynomials
.iter()
.map(|p| p.eval(x))
.collect::<Vec<_>>()
})
.collect::<Vec<_>>();
for evals in &evaluations {
challenger.observe_elements(evals);
}
challenger.observe_hash(&self.merkle_tree.root);
let alpha = challenger.get_challenge();
let scaled_poly = self
.polynomials
.iter()
.rev()
.map(|p| p.clone().into())
.fold(Polynomial::empty(), |acc, p| acc.scalar_mul(alpha).add(&p));
let scaled_evals = evaluations
.iter()
.map(|e| reduce_with_powers(e, alpha))
.collect::<Vec<_>>();
let pairs = points
.iter()
.zip(&scaled_evals)
.map(|(&x, &e)| (x, e))
.collect::<Vec<_>>();
debug_assert!(pairs.iter().all(|&(x, e)| scaled_poly.eval(x) == e));
let interpolant: Polynomial<F> = interpolant(&pairs).into();
let denominator = points
.iter()
.fold(Polynomial::from(vec![F::ONE]), |acc, &x| {
acc.mul(&vec![-x, F::ONE].into())
});
let numerator = scaled_poly.add(&interpolant.neg());
let (mut quotient, rem) = numerator.polynomial_division(&denominator);
debug_assert!(rem.is_zero());
quotient.pad((quotient.degree() + 1).next_power_of_two());
let lde_quotient = PolynomialCoeffs::from(quotient.clone()).lde(self.fri_config.rate_bits);
let lde_quotient_values = lde_quotient
.clone()
.coset_fft(F::MULTIPLICATIVE_GROUP_GENERATOR);
let fri_proof = fri_proof(
&[self.merkle_tree.clone()],
&lde_quotient,
&lde_quotient_values,
challenger,
&self.fri_config,
);
OpeningProof {
evaluations,
merkle_root: self.merkle_tree.root,
fri_proof,
quotient_degree: quotient.len(),
}
}
}
pub struct OpeningProof<F: Field> {
evaluations: Vec<Vec<F>>,
merkle_root: Hash<F>,
fri_proof: FriProof<F>,
quotient_degree: usize,
}
impl<F: Field> OpeningProof<F> {
pub fn verify(
&self,
points: &[F],
challenger: &mut Challenger<F>,
fri_config: &FriConfig,
) -> Result<()> {
for evals in &self.evaluations {
challenger.observe_elements(evals);
}
challenger.observe_hash(&self.merkle_root);
let alpha = challenger.get_challenge();
let scaled_evals = self
.evaluations
.iter()
.map(|e| reduce_with_powers(e, alpha))
.collect::<Vec<_>>();
let pairs = points
.iter()
.zip(&scaled_evals)
.map(|(&x, &e)| (x, e))
.collect::<Vec<_>>();
verify_fri_proof(
log2_strict(self.quotient_degree),
&pairs,
alpha,
&[self.merkle_root],
&self.fri_proof,
challenger,
fri_config,
)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::field::crandall_field::CrandallField;
use anyhow::Result;
fn rand_vec<F: Field>(n: usize) -> Vec<F> {
(0..n).map(|_| F::rand()).collect()
}
fn gen_random_test_case<F: Field>(
k: usize,
degree_log: usize,
num_points: usize,
) -> (Vec<PolynomialCoeffs<F>>, Vec<F>) {
let degree = 1 << degree_log;
let polys = (0..k)
.map(|_| PolynomialCoeffs::new(rand_vec(degree)))
.collect();
let mut points = rand_vec::<F>(num_points);
while points.iter().any(|&x| x.exp_usize(degree).is_one()) {
points = rand_vec(num_points);
}
(polys, points)
}
#[test]
fn test_polynomial_commitment() -> Result<()> {
type F = CrandallField;
let k = 10;
let degree_log = 11;
let num_points = 3;
let fri_config = FriConfig {
proof_of_work_bits: 2,
rate_bits: 2,
reduction_arity_bits: vec![3, 2, 1, 2],
num_query_rounds: 3,
blinding: false,
};
let (polys, points) = gen_random_test_case::<F>(k, degree_log, num_points);
let lpc = ListPolynomialCommitment::new(polys, &fri_config);
let proof = lpc.open(&points, &mut Challenger::new());
proof.verify(&points, &mut Challenger::new(), &fri_config)
}
#[test]
fn test_polynomial_commitment_blinding() -> Result<()> {
type F = CrandallField;
let k = 10;
let degree_log = 11;
let num_points = 3;
let fri_config = FriConfig {
proof_of_work_bits: 2,
rate_bits: 2,
reduction_arity_bits: vec![3, 2, 1, 2],
num_query_rounds: 3,
blinding: true,
};
let (polys, points) = gen_random_test_case::<F>(k, degree_log, num_points);
let lpc = ListPolynomialCommitment::new(polys, &fri_config);
let proof = lpc.open(&points, &mut Challenger::new());
proof.verify(&points, &mut Challenger::new(), &fri_config)
}
}