mirror of
https://github.com/logos-storage/plonky2.git
synced 2026-01-06 15:53:10 +00:00
388 lines
12 KiB
Rust
388 lines
12 KiB
Rust
use crate::circuit_builder::CircuitBuilder;
|
|
use crate::field::extension_field::target::ExtensionTarget;
|
|
use crate::field::extension_field::{Extendable, FieldExtension};
|
|
use crate::field::field::Field;
|
|
use crate::gates::arithmetic::ArithmeticGate;
|
|
use crate::gates::mul_extension::MulExtensionGate;
|
|
use crate::generator::SimpleGenerator;
|
|
use crate::target::Target;
|
|
use crate::wire::Wire;
|
|
use crate::witness::PartialWitness;
|
|
use std::convert::TryInto;
|
|
|
|
impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
|
|
/// Computes `-x`.
|
|
pub fn neg(&mut self, x: Target) -> Target {
|
|
let neg_one = self.neg_one();
|
|
self.mul(x, neg_one)
|
|
}
|
|
|
|
/// Computes `x^2`.
|
|
pub fn square(&mut self, x: Target) -> Target {
|
|
self.mul(x, x)
|
|
}
|
|
|
|
/// Computes `x^3`.
|
|
pub fn cube(&mut self, x: Target) -> Target {
|
|
self.mul_many(&[x, x, x])
|
|
}
|
|
|
|
/// Computes `const_0 * multiplicand_0 * multiplicand_1 + const_1 * addend`.
|
|
pub fn arithmetic(
|
|
&mut self,
|
|
const_0: F,
|
|
multiplicand_0: Target,
|
|
multiplicand_1: Target,
|
|
const_1: F,
|
|
addend: Target,
|
|
) -> Target {
|
|
// See if we can determine the result without adding an `ArithmeticGate`.
|
|
if let Some(result) =
|
|
self.arithmetic_special_cases(const_0, multiplicand_0, multiplicand_1, const_1, addend)
|
|
{
|
|
return result;
|
|
}
|
|
|
|
let gate = self.add_gate(ArithmeticGate::new(), vec![const_0, const_1]);
|
|
|
|
let wire_multiplicand_0 = Wire {
|
|
gate,
|
|
input: ArithmeticGate::WIRE_MULTIPLICAND_0,
|
|
};
|
|
let wire_multiplicand_1 = Wire {
|
|
gate,
|
|
input: ArithmeticGate::WIRE_MULTIPLICAND_1,
|
|
};
|
|
let wire_addend = Wire {
|
|
gate,
|
|
input: ArithmeticGate::WIRE_ADDEND,
|
|
};
|
|
let wire_output = Wire {
|
|
gate,
|
|
input: ArithmeticGate::WIRE_OUTPUT,
|
|
};
|
|
|
|
self.route(multiplicand_0, Target::Wire(wire_multiplicand_0));
|
|
self.route(multiplicand_1, Target::Wire(wire_multiplicand_1));
|
|
self.route(addend, Target::Wire(wire_addend));
|
|
Target::Wire(wire_output)
|
|
}
|
|
|
|
/// Checks for special cases where the value of
|
|
/// `const_0 * multiplicand_0 * multiplicand_1 + const_1 * addend`
|
|
/// can be determined without adding an `ArithmeticGate`.
|
|
fn arithmetic_special_cases(
|
|
&mut self,
|
|
const_0: F,
|
|
multiplicand_0: Target,
|
|
multiplicand_1: Target,
|
|
const_1: F,
|
|
addend: Target,
|
|
) -> Option<Target> {
|
|
let zero = self.zero();
|
|
|
|
let mul_0_const = self.target_as_constant(multiplicand_0);
|
|
let mul_1_const = self.target_as_constant(multiplicand_1);
|
|
let addend_const = self.target_as_constant(addend);
|
|
|
|
let first_term_zero =
|
|
const_0 == F::ZERO || multiplicand_0 == zero || multiplicand_1 == zero;
|
|
let second_term_zero = const_1 == F::ZERO || addend == zero;
|
|
|
|
// If both terms are constant, return their (constant) sum.
|
|
let first_term_const = if first_term_zero {
|
|
Some(F::ZERO)
|
|
} else if let (Some(x), Some(y)) = (mul_0_const, mul_1_const) {
|
|
Some(const_0 * x * y)
|
|
} else {
|
|
None
|
|
};
|
|
let second_term_const = if second_term_zero {
|
|
Some(F::ZERO)
|
|
} else {
|
|
addend_const.map(|x| const_1 * x)
|
|
};
|
|
if let (Some(x), Some(y)) = (first_term_const, second_term_const) {
|
|
return Some(self.constant(x + y));
|
|
}
|
|
|
|
if first_term_zero && const_1.is_one() {
|
|
return Some(addend);
|
|
}
|
|
|
|
if second_term_zero {
|
|
if let Some(x) = mul_0_const {
|
|
if (const_0 * x).is_one() {
|
|
return Some(multiplicand_1);
|
|
}
|
|
}
|
|
if let Some(x) = mul_1_const {
|
|
if (const_1 * x).is_one() {
|
|
return Some(multiplicand_0);
|
|
}
|
|
}
|
|
}
|
|
|
|
None
|
|
}
|
|
|
|
/// Computes `x * y + z`.
|
|
pub fn mul_add(&mut self, x: Target, y: Target, z: Target) -> Target {
|
|
self.arithmetic(F::ONE, x, y, F::ONE, z)
|
|
}
|
|
|
|
/// Computes `x * y - z`.
|
|
pub fn mul_sub(&mut self, x: Target, y: Target, z: Target) -> Target {
|
|
self.arithmetic(F::ONE, x, y, F::NEG_ONE, z)
|
|
}
|
|
|
|
/// Computes `x + y`.
|
|
pub fn add(&mut self, x: Target, y: Target) -> Target {
|
|
let one = self.one();
|
|
// x + y = 1 * x * 1 + 1 * y
|
|
self.arithmetic(F::ONE, x, one, F::ONE, y)
|
|
}
|
|
|
|
pub fn add_many(&mut self, terms: &[Target]) -> Target {
|
|
let mut sum = self.zero();
|
|
for term in terms {
|
|
sum = self.add(sum, *term);
|
|
}
|
|
sum
|
|
}
|
|
|
|
/// Computes `x - y`.
|
|
pub fn sub(&mut self, x: Target, y: Target) -> Target {
|
|
let one = self.one();
|
|
// x - y = 1 * x * 1 + (-1) * y
|
|
self.arithmetic(F::ONE, x, one, F::NEG_ONE, y)
|
|
}
|
|
|
|
/// Computes `x * y`.
|
|
pub fn mul(&mut self, x: Target, y: Target) -> Target {
|
|
// x * y = 1 * x * y + 0 * x
|
|
self.arithmetic(F::ONE, x, y, F::ZERO, x)
|
|
}
|
|
|
|
pub fn mul_many(&mut self, terms: &[Target]) -> Target {
|
|
let mut product = self.one();
|
|
for term in terms {
|
|
product = self.mul(product, *term);
|
|
}
|
|
product
|
|
}
|
|
|
|
// TODO: Optimize this, maybe with a new gate.
|
|
pub fn exp(&mut self, base: Target, exponent: Target) -> Target {
|
|
let mut current = base;
|
|
let one = self.one();
|
|
let mut product = one;
|
|
let exponent_bits = self.split_le(exponent);
|
|
|
|
for bit in exponent_bits.into_iter() {
|
|
product = self.mul_many(&[bit, current, product]);
|
|
current = self.mul(current, current);
|
|
}
|
|
|
|
product
|
|
}
|
|
|
|
/// Computes `q = x / y` by witnessing `q` and requiring that `q * y = x`. This can be unsafe in
|
|
/// some cases, as it allows `0 / 0 = <anything>`.
|
|
pub fn div_unsafe(&mut self, x: Target, y: Target) -> Target {
|
|
// Check for special cases where we can determine the result without an `ArithmeticGate`.
|
|
let zero = self.zero();
|
|
let one = self.one();
|
|
if x == zero {
|
|
return zero;
|
|
}
|
|
if y == one {
|
|
return x;
|
|
}
|
|
if let (Some(x_const), Some(y_const)) =
|
|
(self.target_as_constant(x), self.target_as_constant(y))
|
|
{
|
|
return self.constant(x_const / y_const);
|
|
}
|
|
|
|
// Add an `ArithmeticGate` to compute `q * y`.
|
|
let gate = self.add_gate(ArithmeticGate::new(), vec![F::ONE, F::ZERO]);
|
|
|
|
let wire_multiplicand_0 = Wire {
|
|
gate,
|
|
input: ArithmeticGate::WIRE_MULTIPLICAND_0,
|
|
};
|
|
let wire_multiplicand_1 = Wire {
|
|
gate,
|
|
input: ArithmeticGate::WIRE_MULTIPLICAND_1,
|
|
};
|
|
let wire_addend = Wire {
|
|
gate,
|
|
input: ArithmeticGate::WIRE_ADDEND,
|
|
};
|
|
let wire_output = Wire {
|
|
gate,
|
|
input: ArithmeticGate::WIRE_OUTPUT,
|
|
};
|
|
|
|
let q = Target::Wire(wire_multiplicand_0);
|
|
self.add_generator(QuotientGenerator {
|
|
numerator: x,
|
|
denominator: y,
|
|
quotient: q,
|
|
});
|
|
|
|
self.route(y, Target::Wire(wire_multiplicand_1));
|
|
|
|
// This can be anything, since the whole second term has a weight of zero.
|
|
self.route(zero, Target::Wire(wire_addend));
|
|
|
|
let q_y = Target::Wire(wire_output);
|
|
self.assert_equal(q_y, x);
|
|
|
|
q
|
|
}
|
|
|
|
/// Computes `q = x / y` by witnessing `q` and requiring that `q * y = x`. This can be unsafe in
|
|
/// some cases, as it allows `0 / 0 = <anything>`.
|
|
pub fn div_unsafe_extension(
|
|
&mut self,
|
|
x: ExtensionTarget<D>,
|
|
y: ExtensionTarget<D>,
|
|
) -> ExtensionTarget<D> {
|
|
// Add an `ArithmeticGate` to compute `q * y`.
|
|
let gate = self.add_gate(MulExtensionGate::new(), vec![F::ONE]);
|
|
|
|
let multiplicand_0 =
|
|
Target::wires_from_range(gate, MulExtensionGate::<D>::wires_multiplicand_0());
|
|
let multiplicand_0 = ExtensionTarget(multiplicand_0.try_into().unwrap());
|
|
let multiplicand_1 =
|
|
Target::wires_from_range(gate, MulExtensionGate::<D>::wires_multiplicand_1());
|
|
let multiplicand_1 = ExtensionTarget(multiplicand_1.try_into().unwrap());
|
|
let output = Target::wires_from_range(gate, MulExtensionGate::<D>::wires_output());
|
|
let output = ExtensionTarget(output.try_into().unwrap());
|
|
|
|
self.add_generator(QuotientGeneratorExtension {
|
|
numerator: x,
|
|
denominator: y,
|
|
quotient: multiplicand_0,
|
|
});
|
|
|
|
self.route_extension(y, multiplicand_1);
|
|
|
|
self.assert_equal_extension(output, x);
|
|
|
|
multiplicand_0
|
|
}
|
|
}
|
|
|
|
struct QuotientGenerator {
|
|
numerator: Target,
|
|
denominator: Target,
|
|
quotient: Target,
|
|
}
|
|
|
|
impl<F: Field> SimpleGenerator<F> for QuotientGenerator {
|
|
fn dependencies(&self) -> Vec<Target> {
|
|
vec![self.numerator, self.denominator]
|
|
}
|
|
|
|
fn run_once(&self, witness: &PartialWitness<F>) -> PartialWitness<F> {
|
|
let num = witness.get_target(self.numerator);
|
|
let den = witness.get_target(self.denominator);
|
|
PartialWitness::singleton_target(self.quotient, num / den)
|
|
}
|
|
}
|
|
|
|
struct QuotientGeneratorExtension<const D: usize> {
|
|
numerator: ExtensionTarget<D>,
|
|
denominator: ExtensionTarget<D>,
|
|
quotient: ExtensionTarget<D>,
|
|
}
|
|
|
|
impl<F: Extendable<D>, const D: usize> SimpleGenerator<F> for QuotientGeneratorExtension<D> {
|
|
fn dependencies(&self) -> Vec<Target> {
|
|
let mut deps = self.numerator.to_target_array().to_vec();
|
|
deps.extend(&self.denominator.to_target_array());
|
|
deps
|
|
}
|
|
|
|
fn run_once(&self, witness: &PartialWitness<F>) -> PartialWitness<F> {
|
|
let num = witness.get_extension_target(self.numerator);
|
|
let dem = witness.get_extension_target(self.denominator);
|
|
let quotient = num / dem;
|
|
let mut pw = PartialWitness::new();
|
|
for i in 0..D {
|
|
pw.set_target(
|
|
self.quotient.to_target_array()[i],
|
|
quotient.to_basefield_array()[i],
|
|
);
|
|
}
|
|
pw
|
|
}
|
|
}
|
|
|
|
/// An iterator over the powers of a certain base element `b`: `b^0, b^1, b^2, ...`.
|
|
#[derive(Clone)]
|
|
pub struct PowersTarget<const D: usize> {
|
|
base: ExtensionTarget<D>,
|
|
current: ExtensionTarget<D>,
|
|
}
|
|
|
|
impl<const D: usize> PowersTarget<D> {
|
|
pub fn next<F: Extendable<D>>(
|
|
&mut self,
|
|
builder: &mut CircuitBuilder<F, D>,
|
|
) -> ExtensionTarget<D> {
|
|
let result = self.current;
|
|
self.current = builder.mul_extension(self.base, self.current);
|
|
result
|
|
}
|
|
}
|
|
|
|
impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
|
|
pub fn powers(&mut self, base: ExtensionTarget<D>) -> PowersTarget<D> {
|
|
PowersTarget {
|
|
base,
|
|
current: self.one_extension(),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use crate::circuit_builder::CircuitBuilder;
|
|
use crate::circuit_data::CircuitConfig;
|
|
use crate::field::crandall_field::CrandallField;
|
|
use crate::field::extension_field::quartic::QuarticCrandallField;
|
|
use crate::field::field::Field;
|
|
use crate::fri::FriConfig;
|
|
use crate::prover::PLONK_BLINDING;
|
|
use crate::witness::PartialWitness;
|
|
|
|
#[test]
|
|
fn test_div_extension() {
|
|
type F = CrandallField;
|
|
type FF = QuarticCrandallField;
|
|
const D: usize = 4;
|
|
|
|
let config = CircuitConfig::large_config();
|
|
|
|
let mut builder = CircuitBuilder::<F, D>::new(config);
|
|
|
|
let x = FF::rand();
|
|
let y = FF::rand();
|
|
let x = FF::TWO;
|
|
let y = FF::ONE;
|
|
let z = x / y;
|
|
let xt = builder.constant_extension(x);
|
|
let yt = builder.constant_extension(y);
|
|
let zt = builder.constant_extension(z);
|
|
let comp_zt = builder.div_unsafe_extension(xt, yt);
|
|
builder.assert_equal_extension(zt, comp_zt);
|
|
|
|
let data = builder.build();
|
|
let proof = data.prove(PartialWitness::new());
|
|
}
|
|
}
|