plonky2/src/util/scaling.rs
2021-06-23 11:51:16 +02:00

76 lines
2.2 KiB
Rust

use std::borrow::Borrow;
use crate::field::extension_field::Frobenius;
use crate::field::field::Field;
use crate::polynomial::polynomial::PolynomialCoeffs;
/// When verifying the composition polynomial in FRI we have to compute sums of the form
/// `(sum_0^k a^i * x_i)/d_0 + (sum_k^r a^i * y_i)/d_1`
/// The most efficient way to do this is to compute both quotient separately using Horner's method,
/// scale the second one by `a^(r-1-k)`, and add them up.
/// This struct abstract away these operations by implementing Horner's method and keeping track
/// of the number of multiplications by `a` to compute the scaling factor.
/// See https://github.com/mir-protocol/plonky2/pull/69 for more details and discussions.
#[derive(Debug, Copy, Clone)]
pub struct ReducingFactor<F: Field> {
base: F,
count: u64,
}
impl<F: Field> ReducingFactor<F> {
pub fn new(base: F) -> Self {
Self { base, count: 0 }
}
fn mul(&mut self, x: F) -> F {
self.count += 1;
self.base * x
}
fn mul_poly(&mut self, p: &mut PolynomialCoeffs<F>) {
self.count += 1;
*p *= self.base;
}
pub fn reduce(&mut self, iter: impl DoubleEndedIterator<Item = impl Borrow<F>>) -> F {
iter.rev()
.fold(F::ZERO, |acc, x| self.mul(acc) + *x.borrow())
}
pub fn reduce_polys(
&mut self,
polys: impl DoubleEndedIterator<Item = impl Borrow<PolynomialCoeffs<F>>>,
) -> PolynomialCoeffs<F> {
polys.rev().fold(PolynomialCoeffs::empty(), |mut acc, x| {
self.mul_poly(&mut acc);
acc += x.borrow();
acc
})
}
pub fn shift(&mut self, x: F) -> F {
let tmp = self.base.exp(self.count) * x;
self.count = 0;
tmp
}
pub fn shift_poly(&mut self, p: &mut PolynomialCoeffs<F>) {
*p *= self.base.exp(self.count);
self.count = 0;
}
pub fn reset(&mut self) {
self.count = 0;
}
pub fn repeated_frobenius<const D: usize>(&self, count: usize) -> Self
where
F: Frobenius<D>,
{
Self {
base: self.base.repeated_frobenius(count),
count: self.count,
}
}
}