mirror of
https://github.com/logos-storage/plonky2.git
synced 2026-01-03 14:23:07 +00:00
124 lines
3.8 KiB
Rust
124 lines
3.8 KiB
Rust
use crate::field::fft::ifft;
|
|
use crate::field::field::Field;
|
|
use crate::polynomial::polynomial::{PolynomialCoeffs, PolynomialValues};
|
|
use crate::util::log2_ceil;
|
|
|
|
/// Computes the unique degree < n interpolant of an arbitrary list of n (point, value) pairs.
|
|
///
|
|
/// Note that the implementation assumes that `F` is two-adic, in particular that
|
|
/// `2^{F::TWO_ADICITY} >= points.len()`. This leads to a simple FFT-based implementation.
|
|
pub(crate) fn interpolant<F: Field>(points: &[(F, F)]) -> PolynomialCoeffs<F> {
|
|
let n = points.len();
|
|
let n_log = log2_ceil(n);
|
|
let n_padded = 1 << n_log;
|
|
|
|
let g = F::primitive_root_of_unity(n_log);
|
|
let subgroup = F::cyclic_subgroup_known_order(g, n_padded);
|
|
let barycentric_weights = barycentric_weights(points);
|
|
let subgroup_evals = subgroup
|
|
.into_iter()
|
|
.map(|x| interpolate(points, x, &barycentric_weights))
|
|
.collect();
|
|
|
|
let mut coeffs = ifft(PolynomialValues {
|
|
values: subgroup_evals,
|
|
});
|
|
coeffs.trim();
|
|
coeffs
|
|
}
|
|
|
|
/// Interpolate the polynomial defined by an arbitrary set of (point, value) pairs at the given
|
|
/// point `x`.
|
|
fn interpolate<F: Field>(points: &[(F, F)], x: F, barycentric_weights: &[F]) -> F {
|
|
// If x is in the list of points, the Lagrange formula would divide by zero.
|
|
for &(x_i, y_i) in points {
|
|
if x_i == x {
|
|
return y_i;
|
|
}
|
|
}
|
|
|
|
let l_x: F = points.iter().map(|&(x_i, y_i)| x - x_i).product();
|
|
|
|
let sum = (0..points.len())
|
|
.map(|i| {
|
|
let x_i = points[i].0;
|
|
let y_i = points[i].1;
|
|
let w_i = barycentric_weights[i];
|
|
w_i / (x - x_i) * y_i
|
|
})
|
|
.sum();
|
|
|
|
l_x * sum
|
|
}
|
|
|
|
fn barycentric_weights<F: Field>(points: &[(F, F)]) -> Vec<F> {
|
|
let n = points.len();
|
|
F::batch_multiplicative_inverse(
|
|
&(0..n)
|
|
.map(|i| {
|
|
(0..n)
|
|
.filter(|&j| j != i)
|
|
.map(|j| points[i].0 - points[j].0)
|
|
.product::<F>()
|
|
})
|
|
.collect::<Vec<_>>(),
|
|
)
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use crate::field::crandall_field::CrandallField;
|
|
use crate::field::field::Field;
|
|
use crate::field::lagrange::interpolant;
|
|
use crate::polynomial::polynomial::PolynomialCoeffs;
|
|
|
|
#[test]
|
|
fn interpolant_random() {
|
|
type F = CrandallField;
|
|
|
|
for deg in 0..10 {
|
|
let domain = (0..deg).map(|_| F::rand()).collect::<Vec<_>>();
|
|
let coeffs = (0..deg).map(|_| F::rand()).collect();
|
|
let coeffs = PolynomialCoeffs { coeffs };
|
|
|
|
let points = eval_naive(&coeffs, &domain);
|
|
assert_eq!(interpolant(&points), coeffs);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn interpolant_random_roots_of_unity() {
|
|
type F = CrandallField;
|
|
|
|
for deg_log in 0..4 {
|
|
let deg = 1 << deg_log;
|
|
let g = F::primitive_root_of_unity(deg_log);
|
|
let domain = F::cyclic_subgroup_known_order(g, deg);
|
|
let coeffs = (0..deg).map(|_| F::rand()).collect();
|
|
let coeffs = PolynomialCoeffs { coeffs };
|
|
|
|
let points = eval_naive(&coeffs, &domain);
|
|
assert_eq!(interpolant(&points), coeffs);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn interpolant_random_overspecified() {
|
|
type F = CrandallField;
|
|
|
|
for deg in 0..10 {
|
|
let points = deg + 5;
|
|
let domain = (0..points).map(|_| F::rand()).collect::<Vec<_>>();
|
|
let coeffs = (0..deg).map(|_| F::rand()).collect();
|
|
let coeffs = PolynomialCoeffs { coeffs };
|
|
|
|
let points = eval_naive(&coeffs, &domain);
|
|
assert_eq!(interpolant(&points), coeffs);
|
|
}
|
|
}
|
|
|
|
fn eval_naive<F: Field>(coeffs: &PolynomialCoeffs<F>, domain: &[F]) -> Vec<(F, F)> {
|
|
domain.iter().map(|&x| (x, coeffs.eval(x))).collect()
|
|
}
|
|
}
|