2023-01-21 13:24:45 +07:00

238 lines
7.2 KiB
Rust

use std::mem::transmute;
use std::ops::Range;
use anyhow::Result;
use ethereum_types::U256;
use crate::bn254_arithmetic::{frob_fp12, gen_fp12, gen_fp12_sparse, inv_fp12, Fp12};
use crate::cpu::kernel::aggregator::KERNEL;
use crate::cpu::kernel::interpreter::Interpreter;
use crate::memory::segments::Segment;
use crate::witness::memory::MemoryAddress;
struct InterpreterSetup {
offset: String,
stack: Vec<U256>,
memory: Vec<(usize, Vec<U256>)>,
}
fn run_setup_interpreter(setup: InterpreterSetup) -> Result<Interpreter<'static>> {
let label = KERNEL.global_labels[&setup.offset];
let mut stack = setup.stack;
stack.reverse();
let mut interpreter = Interpreter::new_with_kernel(label, stack);
for (pointer, data) in setup.memory {
for (i, term) in data.iter().enumerate() {
interpreter.generation_state.memory.set(
MemoryAddress::new(0, Segment::KernelGeneral, pointer + i),
*term,
)
}
}
interpreter.run()?;
Ok(interpreter)
}
fn extract_kernel_output(range: Range<usize>, interpreter: Interpreter<'static>) -> Vec<U256> {
let mut output: Vec<U256> = vec![];
for i in range {
let term = interpreter.generation_state.memory.get(MemoryAddress::new(
0,
Segment::KernelGeneral,
i,
));
output.push(term);
}
output
}
fn fp12_on_stack(f: Fp12) -> Vec<U256> {
let f: [U256; 12] = unsafe { transmute(f) };
f.into_iter().collect()
}
fn setup_mul_test(
in0: usize,
in1: usize,
out: usize,
f: Fp12,
g: Fp12,
label: &str,
) -> InterpreterSetup {
InterpreterSetup {
offset: label.to_string(),
stack: vec![
U256::from(in0),
U256::from(in1),
U256::from(out),
U256::from(0xdeadbeefu32),
],
memory: vec![(in0, fp12_on_stack(f)), (in1, fp12_on_stack(g))],
}
}
#[test]
fn test_mul_fp12() -> Result<()> {
let in0: usize = 64;
let in1: usize = 76;
let out: usize = 88;
let f: Fp12 = gen_fp12();
let g: Fp12 = gen_fp12();
let h: Fp12 = gen_fp12_sparse();
let setup_normal: InterpreterSetup = setup_mul_test(in0, in1, out, f, g, "mul_fp12");
let setup_sparse: InterpreterSetup = setup_mul_test(in0, in1, out, f, h, "mul_fp12_sparse");
let setup_square: InterpreterSetup = setup_mul_test(in0, in1, out, f, f, "square_fp12_test");
let intrptr_normal: Interpreter = run_setup_interpreter(setup_normal).unwrap();
let intrptr_sparse: Interpreter = run_setup_interpreter(setup_sparse).unwrap();
let intrptr_square: Interpreter = run_setup_interpreter(setup_square).unwrap();
let out_normal: Vec<U256> = extract_kernel_output(out..out + 12, intrptr_normal);
let out_sparse: Vec<U256> = extract_kernel_output(out..out + 12, intrptr_sparse);
let out_square: Vec<U256> = extract_kernel_output(out..out + 12, intrptr_square);
let exp_normal: Vec<U256> = fp12_on_stack(f * g);
let exp_sparse: Vec<U256> = fp12_on_stack(f * h);
let exp_square: Vec<U256> = fp12_on_stack(f * f);
assert_eq!(out_normal, exp_normal);
assert_eq!(out_sparse, exp_sparse);
assert_eq!(out_square, exp_square);
Ok(())
}
fn setup_frob_test(ptr: usize, f: Fp12, label: &str) -> InterpreterSetup {
InterpreterSetup {
offset: label.to_string(),
stack: vec![U256::from(ptr)],
memory: vec![(ptr, fp12_on_stack(f))],
}
}
#[test]
fn test_frob_fp12() -> Result<()> {
let ptr: usize = 100;
let f: Fp12 = gen_fp12();
let setup_frob_1 = setup_frob_test(ptr, f, "test_frob_fp12_1");
let setup_frob_2 = setup_frob_test(ptr, f, "test_frob_fp12_2");
let setup_frob_3 = setup_frob_test(ptr, f, "test_frob_fp12_3");
let setup_frob_6 = setup_frob_test(ptr, f, "test_frob_fp12_6");
let intrptr_frob_1: Interpreter = run_setup_interpreter(setup_frob_1).unwrap();
let intrptr_frob_2: Interpreter = run_setup_interpreter(setup_frob_2).unwrap();
let intrptr_frob_3: Interpreter = run_setup_interpreter(setup_frob_3).unwrap();
let intrptr_frob_6: Interpreter = run_setup_interpreter(setup_frob_6).unwrap();
let out_frob_1: Vec<U256> = extract_kernel_output(ptr..ptr + 12, intrptr_frob_1);
let out_frob_2: Vec<U256> = extract_kernel_output(ptr..ptr + 12, intrptr_frob_2);
let out_frob_3: Vec<U256> = extract_kernel_output(ptr..ptr + 12, intrptr_frob_3);
let out_frob_6: Vec<U256> = extract_kernel_output(ptr..ptr + 12, intrptr_frob_6);
let exp_frob_1: Vec<U256> = fp12_on_stack(frob_fp12(1, f));
let exp_frob_2: Vec<U256> = fp12_on_stack(frob_fp12(2, f));
let exp_frob_3: Vec<U256> = fp12_on_stack(frob_fp12(3, f));
let exp_frob_6: Vec<U256> = fp12_on_stack(frob_fp12(6, f));
assert_eq!(out_frob_1, exp_frob_1);
assert_eq!(out_frob_2, exp_frob_2);
assert_eq!(out_frob_3, exp_frob_3);
assert_eq!(out_frob_6, exp_frob_6);
Ok(())
}
#[test]
fn test_inv_fp12() -> Result<()> {
let ptr: usize = 100;
let inv: usize = 112;
let f: Fp12 = gen_fp12();
let setup = InterpreterSetup {
offset: "inv_fp12".to_string(),
stack: vec![U256::from(ptr), U256::from(inv), U256::from(0xdeadbeefu32)],
memory: vec![(ptr, fp12_on_stack(f))],
};
let interpreter: Interpreter = run_setup_interpreter(setup).unwrap();
let output: Vec<U256> = extract_kernel_output(inv..inv + 12, interpreter);
let expected: Vec<U256> = fp12_on_stack(inv_fp12(f));
assert_eq!(output, expected);
Ok(())
}
// #[test]
// fn test_power() -> Result<()> {
// let ptr = U256::from(300);
// let out = U256::from(400);
// let f: Fp12 = gen_fp12();
// let mut stack = vec![ptr];
// stack.extend(fp12_on_stack(f));
// stack.extend(vec![
// ptr,
// out,
// get_address_from_label("return_fp12_on_stack"),
// out,
// ]);
// let output: Vec<U256> = run_setup_interpreter("test_pow", stack);
// let expected: Vec<U256> = fp12_on_stack(power(f));
// assert_eq!(output, expected);
// Ok(())
// }
// fn make_tate_stack(p: Curve, q: TwistedCurve) -> Vec<U256> {
// let ptr = U256::from(300);
// let out = U256::from(400);
// let p_: Vec<U256> = p.into_iter().collect();
// let q_: Vec<U256> = q.into_iter().flatten().collect();
// let mut stack = vec![ptr];
// stack.extend(p_);
// stack.extend(q_);
// stack.extend(vec![
// ptr,
// out,
// get_address_from_label("return_fp12_on_stack"),
// out,
// ]);
// stack
// }
// #[test]
// fn test_miller() -> Result<()> {
// let p: Curve = curve_generator();
// let q: TwistedCurve = twisted_curve_generator();
// let stack = make_tate_stack(p, q);
// let output = run_setup_interpreter("test_miller", stack);
// let expected = fp12_on_stack(miller_loop(p, q));
// assert_eq!(output, expected);
// Ok(())
// }
// #[test]
// fn test_tate() -> Result<()> {
// let p: Curve = curve_generator();
// let q: TwistedCurve = twisted_curve_generator();
// let stack = make_tate_stack(p, q);
// let output = run_setup_interpreter("test_tate", stack);
// let expected = fp12_on_stack(tate(p, q));
// assert_eq!(output, expected);
// Ok(())
// }