2023-03-28 12:15:37 -07:00

167 lines
5.7 KiB
NASM

// Arithmetic on little-endian integers represented with 128-bit limbs.
// All integers must be under a given length bound, and are padded with leading zeroes.
// Stores a * b % m in output_loc, leaving a, b, and m unchanged.
// a, b, and m must have the same length.
// output_loc must have size length; scratch_2 must have size 2*length.
// Both scratch_2 and scratch_3 have size 2*length and be initialized with zeroes.
// The prover provides x := (a * b) % m, which is the output of this function.
// We first check that x < m.
// The prover also provides k := (a * b) / m, stored in scratch space.
// We then check that x + k * m = a * b, by computing both of those using
// bignum arithmetic, storing the results in scratch space.
// We assert equality between those two, limb by limb.
global modmul_bignum:
// stack: len, a_loc, b_loc, m_loc, out_loc, s1 (=scratch_1), s2, s3, retdest
DUP1
ISZERO
%jumpi(len_zero)
// STEP 1:
// The prover provides x := (a * b) % m, which we store in output_loc.
PUSH 0
// stack: i=0, len, a_loc, b_loc, m_loc, out_loc, s1, s2, s3, retdest
modmul_remainder_loop:
// stack: i, len, a_loc, b_loc, m_loc, out_loc, s1, s2, s3, retdest
PROVER_INPUT(bignum_modmul)
// stack: PI, i, len, a_loc, b_loc, m_loc, out_loc, s1, s2, s3, retdest
DUP7
DUP3
ADD
// stack: out_loc[i], PI, i, len, a_loc, b_loc, m_loc, out_loc, s1, s2, s3, retdest
%mstore_kernel_general
// stack: i, len, a_loc, b_loc, m_loc, out_loc, s1, s2, s3, retdest
%increment
DUP2
DUP2
// stack: i+1, len, i+1, len, a_loc, b_loc, m_loc, out_loc, s1, s2, s3, retdest
SUB // functions as NEQ
// stack: i+1!=len, i+1, len, a_loc, b_loc, m_loc, out_loc, s1, s2, s3, retdest
%jumpi(modmul_remainder_loop)
// end of modmul_remainder_loop
// stack: i, len, a_loc, b_loc, m_loc, out_loc, s1, s2, s3, retdest
POP
// stack: len, a_loc, b_loc, m_loc, out_loc, s1, s2, s3, retdest
// STEP 2:
// We check that x < m.
PUSH modmul_return_1
DUP6
DUP6
DUP4
// stack: len, m_loc, out_loc, modmul_return_1, len, a_loc, b_loc, m_loc, out_loc, s1, s2, s3, retdest
// Should return 1 iff the value at m_loc > the value at out_loc; in other words, if x < m.
%jump(cmp_bignum)
modmul_return_1:
// stack: cmp_result, len, a_loc, b_loc, m_loc, out_loc, s1, s2, s3, retdest
PUSH 1
%assert_eq
// STEP 3:
// The prover provides k := (a * b) / m, which we store in scratch_1.
// stack: len, a_loc, b_loc, m_loc, out_loc, s1, s2, s3, retdest
DUP1
// stack: len, len, a_loc, b_loc, m_loc, out_loc, s1, s2, s3, retdest
%mul_const(2)
// stack: 2*len, len, a_loc, b_loc, m_loc, out_loc, s1, s2, s3, retdest
PUSH 0
// stack: i=0, 2*len, len, a_loc, b_loc, m_loc, out_loc, s1, s2, s3, retdest
modmul_quotient_loop:
// stack: i, 2*len, len, a_loc, b_loc, m_loc, out_loc, s1, s2, s3, retdest
PROVER_INPUT(bignum_modmul)
// stack: PI, i, 2*len, len, a_loc, b_loc, m_loc, out_loc, s1, s2, s3, retdest
DUP9
DUP3
ADD
// stack: s1[i], PI, i, 2*len, len, a_loc, b_loc, m_loc, out_loc, s1, s2, s3, retdest
%mstore_kernel_general
// stack: i, 2*len, len, a_loc, b_loc, m_loc, out_loc, s1, s2, s3, retdest
%increment
DUP2
DUP2
// stack: i+1, 2*len, i+1, 2*len, len, a_loc, b_loc, m_loc, out_loc, s1, s2, s3, retdest
SUB // functions as NEQ
// stack: i+1!=2*len, i+1, 2*len, len, a_loc, b_loc, m_loc, out_loc, s1, s2, s3, retdest
%jumpi(modmul_quotient_loop)
// end of modmul_quotient_loop
// stack: i, 2*len, len, a_loc, b_loc, m_loc, out_loc, s1, s2, s3, retdest
%pop2
// stack: len, a_loc, b_loc, m_loc, out_loc, s1, s2, s3, retdest
// STEP 4:
// We calculate x + k * m.
// STEP 4.1:
// Multiply k with m and store k * m in scratch_2.
PUSH modmul_return_2
%stack (return, len, a, b, m, out, s1, s2) -> (len, s1, m, s2, return, len, a, b, out, s2)
// stack: len, s1, m_loc, s2, modmul_return_2, len, a_loc, b_loc, out_loc, s2, s3, retdest
%jump(mul_bignum)
modmul_return_2:
// stack: len, a_loc, b_loc, out_loc, s2, s3, retdest
// STEP 4.2:
// Add x into k * m (in scratch_2).
PUSH modmul_return_3
%stack (return, len, a, b, out, s2) -> (len, s2, out, return, len, a, b, s2)
// stack: len, s2, out_loc, modmul_return_3, len, a_loc, b_loc, s2, s3, retdest
%jump(add_bignum)
modmul_return_3:
// stack: carry, len, a_loc, b_loc, s2, s3, retdest
POP
// stack: len, a_loc, b_loc, s2, s3, retdest
// STEP 5:
// We calculate a * b.
// Multiply a with b and store a * b in scratch_3.
PUSH modmul_return_4
%stack (return, len, a, b, s2, s3) -> (len, a, b, s3, return, len, s2, s3)
// stack: len, a_loc, b_loc, s3, modmul_return_4, len, s2, s3, retdest
%jump(mul_bignum)
modmul_return_4:
// stack: len, s2, s3, retdest
// STEP 6:
// Check that x + k * m = a * b.
// Walk through scratch_2 and scratch_3, checking that they are equal.
// stack: n=len, i=s2, j=s3, retdest
modmul_check_loop:
// stack: n, i, j, retdest
%stack (l, idx: 2) -> (idx, l, idx)
// stack: i, j, n, i, j, retdest
%mload_kernel_general
SWAP1
%mload_kernel_general
SWAP1
// stack: mem[i], mem[j], n, i, j, retdest
%assert_eq
// stack: n, i, j, retdest
%decrement
SWAP1
%increment
SWAP2
%increment
SWAP2
SWAP1
// stack: n-1, i+1, j+1, retdest
DUP1
// stack: n-1, n-1, i+1, j+1, retdest
%jumpi(modmul_check_loop)
// end of modmul_check_loop
// stack: n-1, i+1, j+1, retdest
%pop3
// stack: retdest
JUMP
len_zero:
// stack: len, a_loc, b_loc, m_loc, out_loc, s1, s2, s3, retdest
%pop8
// stack: retdest
JUMP