use crate::field::field::Field; use crate::field::lagrange::interpolant; use crate::fri::{prover::fri_proof, verifier::verify_fri_proof, FriConfig}; use crate::merkle_tree::MerkleTree; use crate::plonk_challenger::Challenger; use crate::plonk_common::reduce_with_powers; use crate::polynomial::old_polynomial::Polynomial; use crate::polynomial::polynomial::PolynomialCoeffs; use crate::proof::{FriProof, Hash}; use crate::util::{log2_strict, reverse_index_bits_in_place, transpose}; use anyhow::Result; pub const SALT_SIZE: usize = 2; pub struct ListPolynomialCommitment { pub polynomials: Vec>, pub fri_config: FriConfig, pub merkle_tree: MerkleTree, pub degree: usize, } impl ListPolynomialCommitment { pub fn new(polynomials: Vec>, fri_config: &FriConfig) -> Self { let degree = polynomials[0].len(); let lde_values = polynomials .iter() .map(|p| { assert_eq!(p.len(), degree, "Polynomial degree invalid."); p.clone() .lde(fri_config.rate_bits) .coset_fft(F::MULTIPLICATIVE_GROUP_GENERATOR) .values }) .chain(if fri_config.blinding { // If blinding, salt with two random elements to each leaf vector. (0..SALT_SIZE) .map(|_| F::rand_vec(degree << fri_config.rate_bits)) .collect() } else { Vec::new() }) .collect::>(); let mut leaves = transpose(&lde_values); reverse_index_bits_in_place(&mut leaves); let merkle_tree = MerkleTree::new(leaves, false); Self { polynomials, fri_config: fri_config.clone(), merkle_tree, degree, } } pub fn open( &self, points: &[F], challenger: &mut Challenger, ) -> (OpeningProof, Vec>) { for p in points { assert_ne!( p.exp_usize(self.degree), F::ONE, "Opening point is in the subgroup." ); } let evaluations = points .iter() .map(|&x| { self.polynomials .iter() .map(|p| p.eval(x)) .collect::>() }) .collect::>(); for evals in &evaluations { challenger.observe_elements(evals); } let alpha = challenger.get_challenge(); // Scale polynomials by `alpha`. let composition_poly = self .polynomials .iter() .rev() .map(|p| p.clone().into()) .fold(Polynomial::empty(), |acc, p| acc.scalar_mul(alpha).add(&p)); // Scale evaluations by `alpha`. let composition_evals = evaluations .iter() .map(|e| reduce_with_powers(e, alpha)) .collect::>(); let quotient = Self::compute_quotient(points, &composition_evals, &composition_poly); let lde_quotient = PolynomialCoeffs::from(quotient.clone()).lde(self.fri_config.rate_bits); let lde_quotient_values = lde_quotient .clone() .coset_fft(F::MULTIPLICATIVE_GROUP_GENERATOR); let fri_proof = fri_proof( &[&self.merkle_tree], &lde_quotient, &lde_quotient_values, challenger, &self.fri_config, ); ( OpeningProof { fri_proof, quotient_degree: quotient.len(), }, evaluations, ) } pub fn batch_open( commitments: &[&Self], points: &[F], challenger: &mut Challenger, ) -> (OpeningProof, Vec>) { let degree = commitments[0].degree; assert!( commitments.iter().all(|c| c.degree == degree), "Trying to open polynomial commitments of different degrees." ); let fri_config = &commitments[0].fri_config; assert!( commitments.iter().all(|c| &c.fri_config == fri_config), "Trying to open polynomial commitments with different config." ); for p in points { assert_ne!( p.exp_usize(degree), F::ONE, "Opening point is in the subgroup." ); } let evaluations = points .iter() .map(|&x| { commitments .iter() .flat_map(move |c| c.polynomials.iter().map(|p| p.eval(x)).collect::>()) .collect::>() }) .collect::>(); for evals in &evaluations { challenger.observe_elements(evals); } let alpha = challenger.get_challenge(); // Scale polynomials by `alpha`. let composition_poly = commitments .iter() .flat_map(|c| &c.polynomials) .rev() .map(|p| p.clone().into()) .fold(Polynomial::empty(), |acc, p| acc.scalar_mul(alpha).add(&p)); // Scale evaluations by `alpha`. let composition_evals = evaluations .iter() .map(|e| reduce_with_powers(e, alpha)) .collect::>(); let quotient = Self::compute_quotient(points, &composition_evals, &composition_poly); let lde_quotient = PolynomialCoeffs::from(quotient.clone()).lde(fri_config.rate_bits); let lde_quotient_values = lde_quotient .clone() .coset_fft(F::MULTIPLICATIVE_GROUP_GENERATOR); let fri_proof = fri_proof( &commitments .iter() .map(|c| &c.merkle_tree) .collect::>(), &lde_quotient, &lde_quotient_values, challenger, &fri_config, ); ( OpeningProof { fri_proof, quotient_degree: quotient.len(), }, evaluations, ) } /// Given `points=(x_i)`, `evals=(y_i)` and `poly=P` with `P(x_i)=y_i`, computes the polynomial /// `Q=(P-I)/Z` where `I` interpolates `(x_i, y_i)` and `Z` is the vanishing polynomial on `(x_i)`. fn compute_quotient(points: &[F], evals: &[F], poly: &Polynomial) -> Polynomial { let pairs = points .iter() .zip(evals) .map(|(&x, &e)| (x, e)) .collect::>(); debug_assert!(pairs.iter().all(|&(x, e)| poly.eval(x) == e)); let interpolant: Polynomial = interpolant(&pairs).into(); let denominator = points .iter() .fold(Polynomial::from(vec![F::ONE]), |acc, &x| { acc.mul(&vec![-x, F::ONE].into()) }); let numerator = poly.add(&interpolant.neg()); let (mut quotient, rem) = numerator.polynomial_division(&denominator); debug_assert!(rem.is_zero()); quotient.pad((quotient.degree() + 1).next_power_of_two()); quotient } } pub struct OpeningProof { fri_proof: FriProof, // TODO: Get the degree from `CommonCircuitData` instead. quotient_degree: usize, } impl OpeningProof { pub fn verify( &self, points: &[F], evaluations: &[Vec], merkle_roots: &[Hash], challenger: &mut Challenger, fri_config: &FriConfig, ) -> Result<()> { for evals in evaluations { challenger.observe_elements(evals); } let alpha = challenger.get_challenge(); let scaled_evals = evaluations .iter() .map(|e| reduce_with_powers(e, alpha)) .collect::>(); let pairs = points .iter() .zip(&scaled_evals) .map(|(&x, &e)| (x, e)) .collect::>(); verify_fri_proof( log2_strict(self.quotient_degree), &pairs, alpha, merkle_roots, &self.fri_proof, challenger, fri_config, ) } } #[cfg(test)] mod tests { use super::*; use crate::field::crandall_field::CrandallField; use anyhow::Result; fn gen_random_test_case( k: usize, degree_log: usize, num_points: usize, ) -> (Vec>, Vec) { let degree = 1 << degree_log; let polys = (0..k) .map(|_| PolynomialCoeffs::new(F::rand_vec(degree))) .collect(); let mut points = F::rand_vec(num_points); while points.iter().any(|&x| x.exp_usize(degree).is_one()) { points = F::rand_vec(num_points); } (polys, points) } #[test] fn test_polynomial_commitment() -> Result<()> { type F = CrandallField; let k = 10; let degree_log = 11; let num_points = 3; let fri_config = FriConfig { proof_of_work_bits: 2, rate_bits: 2, reduction_arity_bits: vec![3, 2, 1, 2], num_query_rounds: 3, blinding: false, }; let (polys, points) = gen_random_test_case::(k, degree_log, num_points); let lpc = ListPolynomialCommitment::new(polys, &fri_config); let (proof, evaluations) = lpc.open(&points, &mut Challenger::new()); proof.verify( &points, &evaluations, &[lpc.merkle_tree.root], &mut Challenger::new(), &fri_config, ) } #[test] fn test_polynomial_commitment_blinding() -> Result<()> { type F = CrandallField; let k = 10; let degree_log = 11; let num_points = 3; let fri_config = FriConfig { proof_of_work_bits: 2, rate_bits: 2, reduction_arity_bits: vec![3, 2, 1, 2], num_query_rounds: 3, blinding: true, }; let (polys, points) = gen_random_test_case::(k, degree_log, num_points); let lpc = ListPolynomialCommitment::new(polys, &fri_config); let (proof, evaluations) = lpc.open(&points, &mut Challenger::new()); proof.verify( &points, &evaluations, &[lpc.merkle_tree.root], &mut Challenger::new(), &fri_config, ) } #[test] fn test_batch_polynomial_commitment() -> Result<()> { type F = CrandallField; let k0 = 10; let k1 = 3; let k2 = 7; let degree_log = 11; let num_points = 5; let fri_config = FriConfig { proof_of_work_bits: 2, rate_bits: 2, reduction_arity_bits: vec![2, 3, 1, 2], num_query_rounds: 3, blinding: false, }; let (polys0, _) = gen_random_test_case::(k0, degree_log, num_points); let (polys1, _) = gen_random_test_case::(k0, degree_log, num_points); let (polys2, points) = gen_random_test_case::(k0, degree_log, num_points); let lpc0 = ListPolynomialCommitment::new(polys0, &fri_config); let lpc1 = ListPolynomialCommitment::new(polys1, &fri_config); let lpc2 = ListPolynomialCommitment::new(polys2, &fri_config); let (proof, evaluations) = ListPolynomialCommitment::batch_open( &[&lpc0, &lpc1, &lpc2], &points, &mut Challenger::new(), ); proof.verify( &points, &evaluations, &[ lpc0.merkle_tree.root, lpc1.merkle_tree.root, lpc2.merkle_tree.root, ], &mut Challenger::new(), &fri_config, ) } #[test] fn test_batch_polynomial_commitment_blinding() -> Result<()> { type F = CrandallField; let k0 = 10; let k1 = 3; let k2 = 7; let degree_log = 11; let num_points = 5; let fri_config = FriConfig { proof_of_work_bits: 2, rate_bits: 2, reduction_arity_bits: vec![2, 3, 1, 2], num_query_rounds: 3, blinding: true, }; let (polys0, _) = gen_random_test_case::(k0, degree_log, num_points); let (polys1, _) = gen_random_test_case::(k0, degree_log, num_points); let (polys2, points) = gen_random_test_case::(k0, degree_log, num_points); let lpc0 = ListPolynomialCommitment::new(polys0, &fri_config); let lpc1 = ListPolynomialCommitment::new(polys1, &fri_config); let lpc2 = ListPolynomialCommitment::new(polys2, &fri_config); let (proof, evaluations) = ListPolynomialCommitment::batch_open( &[&lpc0, &lpc1, &lpc2], &points, &mut Challenger::new(), ); proof.verify( &points, &evaluations, &[ lpc0.merkle_tree.root, lpc1.merkle_tree.root, lpc2.merkle_tree.root, ], &mut Challenger::new(), &fri_config, ) } }