use std::collections::BTreeMap; use std::ops::Range; use hashbrown::HashMap; use itertools::Itertools; use plonky2::field::extension::Extendable; use plonky2::fri::FriParams; use plonky2::gates::noop::NoopGate; use plonky2::hash::hash_types::RichField; use plonky2::hash::hashing::HashConfig; use plonky2::iop::challenger::RecursiveChallenger; use plonky2::iop::target::{BoolTarget, Target}; use plonky2::iop::witness::{PartialWitness, WitnessWrite}; use plonky2::plonk::circuit_builder::CircuitBuilder; use plonky2::plonk::circuit_data::{ CircuitConfig, CircuitData, CommonCircuitData, VerifierCircuitTarget, }; use plonky2::plonk::config::{AlgebraicHasher, GenericConfig, Hasher}; use plonky2::plonk::proof::{ProofWithPublicInputs, ProofWithPublicInputsTarget}; use plonky2::recursion::cyclic_recursion::check_cyclic_proof_verifier_data; use plonky2::recursion::dummy_circuit::cyclic_base_proof; use plonky2::util::timing::TimingTree; use plonky2_util::log2_ceil; use crate::all_stark::{all_cross_table_lookups, AllStark, Table, NUM_TABLES}; use crate::config::StarkConfig; use crate::cpu::cpu_stark::CpuStark; use crate::cross_table_lookup::{verify_cross_table_lookups_circuit, CrossTableLookup}; use crate::generation::GenerationInputs; use crate::keccak::keccak_stark::KeccakStark; use crate::keccak_sponge::keccak_sponge_stark::KeccakSpongeStark; use crate::logic::LogicStark; use crate::memory::memory_stark::MemoryStark; use crate::permutation::{get_grand_product_challenge_set_target, GrandProductChallengeSet}; use crate::proof::StarkProofWithMetadata; use crate::prover::prove; use crate::recursive_verifier::{ add_common_recursion_gates, recursive_stark_circuit, PlonkWrapperCircuit, PublicInputs, StarkWrapperCircuit, }; use crate::stark::Stark; /// The recursion threshold. We end a chain of recursive proofs once we reach this size. const THRESHOLD_DEGREE_BITS: usize = 13; /// Contains all recursive circuits used in the system. For each STARK and each initial /// `degree_bits`, this contains a chain of recursive circuits for shrinking that STARK from /// `degree_bits` to a constant `THRESHOLD_DEGREE_BITS`. It also contains a special root circuit /// for combining each STARK's shrunk wrapper proof into a single proof. pub struct AllRecursiveCircuits where F: RichField + Extendable, C: GenericConfig, [(); C::HCO::WIDTH]:, { /// The EVM root circuit, which aggregates the (shrunk) per-table recursive proofs. pub root: RootCircuitData, pub aggregation: AggregationCircuitData, /// The block circuit, which verifies an aggregation root proof and a previous block proof. pub block: BlockCircuitData, /// Holds chains of circuits for each table and for each initial `degree_bits`. by_table: [RecursiveCircuitsForTable; NUM_TABLES], } /// Data for the EVM root circuit, which is used to combine each STARK's shrunk wrapper proof /// into a single proof. pub struct RootCircuitData where F: RichField + Extendable, C: GenericConfig, { circuit: CircuitData, proof_with_pis: [ProofWithPublicInputsTarget; NUM_TABLES], /// For each table, various inner circuits may be used depending on the initial table size. /// This target holds the index of the circuit (within `final_circuits()`) that was used. index_verifier_data: [Target; NUM_TABLES], /// Public inputs used for cyclic verification. These aren't actually used for EVM root /// proofs; the circuit has them just to match the structure of aggregation proofs. cyclic_vk: VerifierCircuitTarget, } /// Data for the aggregation circuit, which is used to compress two proofs into one. Each inner /// proof can be either an EVM root proof or another aggregation proof. pub struct AggregationCircuitData where F: RichField + Extendable, C: GenericConfig, { circuit: CircuitData, lhs: AggregationChildTarget, rhs: AggregationChildTarget, cyclic_vk: VerifierCircuitTarget, } pub struct AggregationChildTarget { is_agg: BoolTarget, agg_proof: ProofWithPublicInputsTarget, evm_proof: ProofWithPublicInputsTarget, } pub struct BlockCircuitData where F: RichField + Extendable, C: GenericConfig, { circuit: CircuitData, has_parent_block: BoolTarget, parent_block_proof: ProofWithPublicInputsTarget, agg_root_proof: ProofWithPublicInputsTarget, cyclic_vk: VerifierCircuitTarget, } impl AllRecursiveCircuits where F: RichField + Extendable, C: GenericConfig + 'static, C::Hasher: AlgebraicHasher, [(); C::Hasher::HASH_SIZE]:, [(); CpuStark::::COLUMNS]:, [(); KeccakStark::::COLUMNS]:, [(); KeccakSpongeStark::::COLUMNS]:, [(); LogicStark::::COLUMNS]:, [(); MemoryStark::::COLUMNS]:, [(); C::HCO::WIDTH]:, [(); C::HCI::WIDTH]:, { /// Preprocess all recursive circuits used by the system. pub fn new( all_stark: &AllStark, degree_bits_range: Range, stark_config: &StarkConfig, ) -> Self { let cpu = RecursiveCircuitsForTable::new( Table::Cpu, &all_stark.cpu_stark, degree_bits_range.clone(), &all_stark.cross_table_lookups, stark_config, ); let keccak = RecursiveCircuitsForTable::new( Table::Keccak, &all_stark.keccak_stark, degree_bits_range.clone(), &all_stark.cross_table_lookups, stark_config, ); let keccak_sponge = RecursiveCircuitsForTable::new( Table::KeccakSponge, &all_stark.keccak_sponge_stark, degree_bits_range.clone(), &all_stark.cross_table_lookups, stark_config, ); let logic = RecursiveCircuitsForTable::new( Table::Logic, &all_stark.logic_stark, degree_bits_range.clone(), &all_stark.cross_table_lookups, stark_config, ); let memory = RecursiveCircuitsForTable::new( Table::Memory, &all_stark.memory_stark, degree_bits_range, &all_stark.cross_table_lookups, stark_config, ); let by_table = [cpu, keccak, keccak_sponge, logic, memory]; let root = Self::create_root_circuit(&by_table, stark_config); let aggregation = Self::create_aggregation_circuit(&root); let block = Self::create_block_circuit(&aggregation); Self { root, aggregation, block, by_table, } } fn create_root_circuit( by_table: &[RecursiveCircuitsForTable; NUM_TABLES], stark_config: &StarkConfig, ) -> RootCircuitData { let inner_common_data: [_; NUM_TABLES] = core::array::from_fn(|i| &by_table[i].final_circuits()[0].common); let mut builder = CircuitBuilder::new(CircuitConfig::standard_recursion_config()); let recursive_proofs = core::array::from_fn(|i| builder.add_virtual_proof_with_pis(inner_common_data[i])); let pis: [_; NUM_TABLES] = core::array::from_fn(|i| { PublicInputs::::from_vec( &recursive_proofs[i].public_inputs, stark_config, ) }); let index_verifier_data = core::array::from_fn(|_i| builder.add_virtual_target()); let mut challenger = RecursiveChallenger::::new(&mut builder); for pi in &pis { for h in &pi.trace_cap { challenger.observe_elements(h); } } let ctl_challenges = get_grand_product_challenge_set_target( &mut builder, &mut challenger, stark_config.num_challenges, ); // Check that the correct CTL challenges are used in every proof. for pi in &pis { for i in 0..stark_config.num_challenges { builder.connect( ctl_challenges.challenges[i].beta, pi.ctl_challenges.challenges[i].beta, ); builder.connect( ctl_challenges.challenges[i].gamma, pi.ctl_challenges.challenges[i].gamma, ); } } let state = challenger.compact(&mut builder); for k in 0..C::HCO::WIDTH { builder.connect(state[k], pis[0].challenger_state_before[k]); } // Check that the challenger state is consistent between proofs. for i in 1..NUM_TABLES { for k in 0..C::HCO::WIDTH { builder.connect( pis[i].challenger_state_before[k], pis[i - 1].challenger_state_after[k], ); } } // Verify the CTL checks. verify_cross_table_lookups_circuit::( &mut builder, all_cross_table_lookups(), pis.map(|p| p.ctl_zs_last), stark_config, ); for (i, table_circuits) in by_table.iter().enumerate() { let final_circuits = table_circuits.final_circuits(); for final_circuit in &final_circuits { assert_eq!( &final_circuit.common, inner_common_data[i], "common_data mismatch" ); } let mut possible_vks = final_circuits .into_iter() .map(|c| builder.constant_verifier_data(&c.verifier_only)) .collect_vec(); // random_access_verifier_data expects a vector whose length is a power of two. // To satisfy this, we will just add some duplicates of the first VK. while !possible_vks.len().is_power_of_two() { possible_vks.push(possible_vks[0].clone()); } let inner_verifier_data = builder.random_access_verifier_data(index_verifier_data[i], possible_vks); builder.verify_proof::( &recursive_proofs[i], &inner_verifier_data, inner_common_data[i], ); } // We want EVM root proofs to have the exact same structure as aggregation proofs, so we add // public inputs for cyclic verification, even though they'll be ignored. let cyclic_vk = builder.add_verifier_data_public_inputs(); RootCircuitData { circuit: builder.build::(), proof_with_pis: recursive_proofs, index_verifier_data, cyclic_vk, } } fn create_aggregation_circuit( root: &RootCircuitData, ) -> AggregationCircuitData { let mut builder = CircuitBuilder::::new(root.circuit.common.config.clone()); let cyclic_vk = builder.add_verifier_data_public_inputs(); let lhs = Self::add_agg_child(&mut builder, root); let rhs = Self::add_agg_child(&mut builder, root); // Pad to match the root circuit's degree. while log2_ceil(builder.num_gates()) < root.circuit.common.degree_bits() { builder.add_gate(NoopGate, vec![]); } let circuit = builder.build::(); AggregationCircuitData { circuit, lhs, rhs, cyclic_vk, } } fn add_agg_child( builder: &mut CircuitBuilder, root: &RootCircuitData, ) -> AggregationChildTarget { let common = &root.circuit.common; let root_vk = builder.constant_verifier_data(&root.circuit.verifier_only); let is_agg = builder.add_virtual_bool_target_safe(); let agg_proof = builder.add_virtual_proof_with_pis(common); let evm_proof = builder.add_virtual_proof_with_pis(common); builder .conditionally_verify_cyclic_proof::( is_agg, &agg_proof, &evm_proof, &root_vk, common, ) .expect("Failed to build cyclic recursion circuit"); AggregationChildTarget { is_agg, agg_proof, evm_proof, } } fn create_block_circuit(agg: &AggregationCircuitData) -> BlockCircuitData { // The block circuit is similar to the agg circuit; both verify two inner proofs. // We need to adjust a few things, but it's easier than making a new CommonCircuitData. let expected_common_data = CommonCircuitData { fri_params: FriParams { degree_bits: 14, ..agg.circuit.common.fri_params.clone() }, ..agg.circuit.common.clone() }; let mut builder = CircuitBuilder::::new(CircuitConfig::standard_recursion_config()); let has_parent_block = builder.add_virtual_bool_target_safe(); let parent_block_proof = builder.add_virtual_proof_with_pis(&expected_common_data); let agg_root_proof = builder.add_virtual_proof_with_pis(&agg.circuit.common); let cyclic_vk = builder.add_verifier_data_public_inputs(); builder .conditionally_verify_cyclic_proof_or_dummy::( has_parent_block, &parent_block_proof, &expected_common_data, ) .expect("Failed to build cyclic recursion circuit"); let agg_verifier_data = builder.constant_verifier_data(&agg.circuit.verifier_only); builder.verify_proof::(&agg_root_proof, &agg_verifier_data, &agg.circuit.common); let circuit = builder.build::(); BlockCircuitData { circuit, has_parent_block, parent_block_proof, agg_root_proof, cyclic_vk, } } /// Create a proof for each STARK, then combine them, eventually culminating in a root proof. pub fn prove_root( &self, all_stark: &AllStark, config: &StarkConfig, generation_inputs: GenerationInputs, timing: &mut TimingTree, ) -> anyhow::Result> { let all_proof = prove::(all_stark, config, generation_inputs, timing)?; let mut root_inputs = PartialWitness::new(); for table in 0..NUM_TABLES { let stark_proof = &all_proof.stark_proofs[table]; let original_degree_bits = stark_proof.proof.recover_degree_bits(config); let table_circuits = &self.by_table[table]; let shrunk_proof = table_circuits.by_stark_size[&original_degree_bits] .shrink(stark_proof, &all_proof.ctl_challenges)?; let index_verifier_data = table_circuits .by_stark_size .keys() .position(|&size| size == original_degree_bits) .unwrap(); root_inputs.set_target( self.root.index_verifier_data[table], F::from_canonical_usize(index_verifier_data), ); root_inputs.set_proof_with_pis_target(&self.root.proof_with_pis[table], &shrunk_proof); } root_inputs.set_verifier_data_target( &self.root.cyclic_vk, &self.aggregation.circuit.verifier_only, ); self.root.circuit.prove(root_inputs) } pub fn verify_root(&self, agg_proof: ProofWithPublicInputs) -> anyhow::Result<()> { self.root.circuit.verify(agg_proof) } pub fn prove_aggregation( &self, lhs_is_agg: bool, lhs_proof: &ProofWithPublicInputs, rhs_is_agg: bool, rhs_proof: &ProofWithPublicInputs, ) -> anyhow::Result> { let mut agg_inputs = PartialWitness::new(); agg_inputs.set_bool_target(self.aggregation.lhs.is_agg, lhs_is_agg); agg_inputs.set_proof_with_pis_target(&self.aggregation.lhs.agg_proof, lhs_proof); agg_inputs.set_proof_with_pis_target(&self.aggregation.lhs.evm_proof, lhs_proof); agg_inputs.set_bool_target(self.aggregation.rhs.is_agg, rhs_is_agg); agg_inputs.set_proof_with_pis_target(&self.aggregation.rhs.agg_proof, rhs_proof); agg_inputs.set_proof_with_pis_target(&self.aggregation.rhs.evm_proof, rhs_proof); agg_inputs.set_verifier_data_target( &self.aggregation.cyclic_vk, &self.aggregation.circuit.verifier_only, ); self.aggregation.circuit.prove(agg_inputs) } pub fn verify_aggregation( &self, agg_proof: &ProofWithPublicInputs, ) -> anyhow::Result<()> { self.aggregation.circuit.verify(agg_proof.clone())?; check_cyclic_proof_verifier_data( agg_proof, &self.aggregation.circuit.verifier_only, &self.aggregation.circuit.common, ) } pub fn prove_block( &self, opt_parent_block_proof: Option<&ProofWithPublicInputs>, agg_root_proof: &ProofWithPublicInputs, ) -> anyhow::Result> { let mut block_inputs = PartialWitness::new(); block_inputs.set_bool_target( self.block.has_parent_block, opt_parent_block_proof.is_some(), ); if let Some(parent_block_proof) = opt_parent_block_proof { block_inputs .set_proof_with_pis_target(&self.block.parent_block_proof, parent_block_proof); } else { block_inputs.set_proof_with_pis_target( &self.block.parent_block_proof, &cyclic_base_proof( &self.block.circuit.common, &self.block.circuit.verifier_only, HashMap::new(), ), ); } block_inputs.set_proof_with_pis_target(&self.block.agg_root_proof, agg_root_proof); block_inputs .set_verifier_data_target(&self.block.cyclic_vk, &self.block.circuit.verifier_only); self.block.circuit.prove(block_inputs) } pub fn verify_block(&self, block_proof: &ProofWithPublicInputs) -> anyhow::Result<()> { self.block.circuit.verify(block_proof.clone())?; check_cyclic_proof_verifier_data( block_proof, &self.block.circuit.verifier_only, &self.block.circuit.common, ) } } struct RecursiveCircuitsForTable where F: RichField + Extendable, C: GenericConfig, [(); C::HCO::WIDTH]:, { /// A map from `log_2(height)` to a chain of shrinking recursion circuits starting at that /// height. by_stark_size: BTreeMap>, } impl RecursiveCircuitsForTable where F: RichField + Extendable, C: GenericConfig, C::Hasher: AlgebraicHasher, [(); C::Hasher::HASH_SIZE]:, [(); C::HCO::WIDTH]:, [(); C::HCI::WIDTH]:, { fn new>( table: Table, stark: &S, degree_bits_range: Range, all_ctls: &[CrossTableLookup], stark_config: &StarkConfig, ) -> Self where [(); S::COLUMNS]:, { let by_stark_size = degree_bits_range .map(|degree_bits| { ( degree_bits, RecursiveCircuitsForTableSize::new::( table, stark, degree_bits, all_ctls, stark_config, ), ) }) .collect(); Self { by_stark_size } } /// For each initial `degree_bits`, get the final circuit at the end of that shrinking chain. /// Each of these final circuits should have degree `THRESHOLD_DEGREE_BITS`. fn final_circuits(&self) -> Vec<&CircuitData> { self.by_stark_size .values() .map(|chain| { chain .shrinking_wrappers .last() .map(|wrapper| &wrapper.circuit) .unwrap_or(&chain.initial_wrapper.circuit) }) .collect() } } /// A chain of shrinking wrapper circuits, ending with a final circuit with `degree_bits` /// `THRESHOLD_DEGREE_BITS`. struct RecursiveCircuitsForTableSize where F: RichField + Extendable, C: GenericConfig, [(); C::HCO::WIDTH]:, { initial_wrapper: StarkWrapperCircuit, shrinking_wrappers: Vec>, } impl RecursiveCircuitsForTableSize where F: RichField + Extendable, C: GenericConfig, C::Hasher: AlgebraicHasher, [(); C::Hasher::HASH_SIZE]:, [(); C::HCO::WIDTH]:, [(); C::HCI::WIDTH]:, { fn new>( table: Table, stark: &S, degree_bits: usize, all_ctls: &[CrossTableLookup], stark_config: &StarkConfig, ) -> Self where [(); S::COLUMNS]:, { let initial_wrapper = recursive_stark_circuit( table, stark, degree_bits, all_ctls, stark_config, &shrinking_config(), THRESHOLD_DEGREE_BITS, ); let mut shrinking_wrappers = vec![]; // Shrinking recursion loop. loop { let last = shrinking_wrappers .last() .map(|wrapper: &PlonkWrapperCircuit| &wrapper.circuit) .unwrap_or(&initial_wrapper.circuit); let last_degree_bits = last.common.degree_bits(); assert!(last_degree_bits >= THRESHOLD_DEGREE_BITS); if last_degree_bits == THRESHOLD_DEGREE_BITS { break; } let mut builder = CircuitBuilder::new(shrinking_config()); let proof_with_pis_target = builder.add_virtual_proof_with_pis(&last.common); let last_vk = builder.constant_verifier_data(&last.verifier_only); builder.verify_proof::(&proof_with_pis_target, &last_vk, &last.common); builder.register_public_inputs(&proof_with_pis_target.public_inputs); // carry PIs forward add_common_recursion_gates(&mut builder); let circuit = builder.build::(); assert!( circuit.common.degree_bits() < last_degree_bits, "Couldn't shrink to expected recursion threshold of 2^{}; stalled at 2^{}", THRESHOLD_DEGREE_BITS, circuit.common.degree_bits() ); shrinking_wrappers.push(PlonkWrapperCircuit { circuit, proof_with_pis_target, }); } Self { initial_wrapper, shrinking_wrappers, } } fn shrink( &self, stark_proof_with_metadata: &StarkProofWithMetadata, ctl_challenges: &GrandProductChallengeSet, ) -> anyhow::Result> { let mut proof = self .initial_wrapper .prove(stark_proof_with_metadata, ctl_challenges)?; for wrapper_circuit in &self.shrinking_wrappers { proof = wrapper_circuit.prove(&proof)?; } Ok(proof) } } /// Our usual recursion threshold is 2^12 gates, but for these shrinking circuits, we use a few more /// gates for a constant inner VK and for public inputs. This pushes us over the threshold to 2^13. /// As long as we're at 2^13 gates, we might as well use a narrower witness. fn shrinking_config() -> CircuitConfig { CircuitConfig { num_routed_wires: 40, ..CircuitConfig::standard_recursion_config() } }