
D
RA
FT

The Polygon Zero zkEVM

DRAFT
September 24, 2022

Abstract

We describe the design of Polygon Zero’s zkEVM, ...

1

D
RA
FT

Contents

1 Introduction 3

2 STARK framework 3
2.1 Cost model . 3
2.2 Field selection . 3
2.3 Cross-table lookups . 4

3 Tables 4
3.1 CPU . 4
3.2 Arithmetic . 4
3.3 Logic . 4
3.4 Memory . 4

3.4.1 Virtual memory . 5
3.4.2 Timestamps . 6

3.5 Keccak-f . 6
3.6 Keccak sponge . 6

4 Merkle Patricia tries 6
4.1 Internal memory format . 6
4.2 Prover input format . 7

5 Privileged instructions 7

2

D
RA
FT

1 Introduction

TODO

2 STARK framework

2.1 Cost model

Our zkEVM is designed for efficient verification by STARKs [1], particularly
by an AIR with degree 3 constraints. In this model, the prover bottleneck is
typically constructing Merkle trees, particularly constructing the tree contain-
ing low-degree extensions of witness polynomials.

2.2 Field selection

Our zkEVM is designed to have its execution traces encoded in a particular
prime field Fp, with p = 264 − 232 + 1. A nice property of this field is that
it can represent the results of many common u32 operations. For example,
(widening) u32 multiplication has a maximum value of (232−1)2, which is less
than p. In fact a u32 multiply-add has a maximum value of p−1, so the result
can be represented with a single field element, although if we were to add a
carry in bit, this no longer holds.

This field also enables a very efficient reduction method. Observe that

264 ≡ 232 − 1 (mod p)

and consequently

296 ≡ 232(232 − 1) (mod p)

≡ 264 − 232 (mod p)

≡ −1 (mod p).

To reduce a 128-bit number n, we first rewrite n as n0 + 264n1 + 296n2, where
n0 is 64 bits and n1, n2 are 32 bits each. Then

n ≡ n0 + 264n1 + 296n2 (mod p)

≡ n0 + (232 − 1)n1 − n2 (mod p)

After computing (232 − 1)n1, which can be done with a shift and subtraction,
we add the first two terms, subtracting p if overflow occurs. We then subtract
n2, adding p if underflow occurs.

3

D
RA
FT

At this point we have reduced n to a u64. This partial reduction is adequate
for most purposes, but if we needed the result in canonical form, we would
perform a final conditional subtraction.

2.3 Cross-table lookups

TODO

3 Tables

3.1 CPU

TODO

3.2 Arithmetic

TODO

3.3 Logic

TODO

3.4 Memory

For simplicity, let’s treat addresses and values as individual field elements.
The generalization to multi-element addresses and values is straightforward.

Each row of the memory table corresponds to a single memory operation
(a read or a write), and contains the following columns:

1. a, the target address

2. r, an “is read” flag, which should be 1 for a read or 0 for a write

3. v, the value being read or written

4. τ , the timestamp of the operation

The memory table should be ordered by (a, τ). Note that the correctness
memory could be checked as follows:

1. Verify the ordering by checking that (ai, τi) < (ai+1, τi+1) for each con-
secutive pair.

4

D
RA
FT

2. Enumerate the purportedly-ordered log while tracking a “current” value
c, which is initially zero.1

(a) Upon observing an address which doesn’t match that of the previous
row, set c← 0.

(b) Upon observing a write, set c← v.

(c) Upon observing a read, check that v = c.

The ordering check is slightly involved since we are comparing multiple
columns. To facilitate this, we add an additional column e, where the prover
can indicate whether two consecutive addresses are equal. An honest prover
will set

ei ←

{
1 if ai = ai+1,

0 otherwise.

We then impose the following transition constraints:

1. ei(ei − 1) = 0,

2. ei(ai − ai+1) = 0,

3. ei(τi+1 − τi) + (1− ei)(ai+1 − ai − 1) < 232.

The last constraint emulates a comparison between two addresses or times-
tamps by bounding their difference; this assumes that all addresses and times-
tamps fit in 32 bits and that the field is larger than that.

Finally, the iterative checks can be arithmetized by introducing a trace
column for the current value c. We add a boundary constraint c0 = 0, and the
following transition constraints: This is out of

date, we don’t
actually need a
c column.

1. vfrom,i = ci,

2. ci+1 = eivto,i.

3.4.1 Virtual memory

In the EVM, each contract call has its own address space. Within that address
space, there are separate segments for code, main memory, stack memory,
calldata, and returndata. Thus each address actually has three compoments:

1. an execution context, representing a contract call,

1EVM memory is zero-initialized.

5

D
RA
FT

2. a segment ID, used to separate code, main memory, and so forth, and so
on

3. a virtual address.

The comparisons now involve several columns, which requires some minor
adaptations to the technique described above; we will leave these as an exercise
to the reader.

3.4.2 Timestamps

TODO: Explain τ = NUM CHANNELS× cycle + channel.

3.5 Keccak-f

This table computes the Keccak-f[1600] permutation.

3.6 Keccak sponge

This table computes the Keccak256 hash, a sponge-based hash built on top of
the Keccak-f[1600] permutation.

4 Merkle Patricia tries

4.1 Internal memory format

Withour our zkEVM’s kernel memory,

1. An empty node is encoded as (MPT NODE EMPTY).

2. A branch node is encoded as (MPT NODE BRANCH, c1, . . . , c16, v), where
each ci is a pointer to a child node, and v is a leaf payload.

3. An extension node is encoded as (MPT NODE EXTENSION, k, c), k is a 2-
tuple (packed nibbles, num nibbles), and c is a pointer to a child node.

4. A leaf node is encoded as (MPT NODE LEAF, k, v), where k is a 2-tuple as
above, and v is a leaf payload.

5. A digest node is encoded as (MPT NODE DIGEST, d), where d is a Kec-
cak256 digest.

6

D
RA
FT

4.2 Prover input format

5 Privileged instructions

0xFB. MLOAD GENERAL. Returns

0xFC. MSTORE GENERAL. Returns

TODO. STACK SIZE. Returns

References

[1] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Scalable, transpar-
ent, and post-quantum secure computational integrity.” Cryptology ePrint
Archive, Report 2018/046, 2018. https://ia.cr/2018/046.

7

https://ia.cr/2018/046

	Introduction
	STARK framework
	Cost model
	Field selection
	Cross-table lookups

	Tables
	CPU
	Arithmetic
	Logic
	Memory
	Virtual memory
	Timestamps

	Keccak-f
	Keccak sponge

	Merkle Patricia tries
	Internal memory format
	Prover input format

	Privileged instructions

