use std::convert::TryInto; use std::fmt; use std::fmt::{Debug, Display, Formatter}; use std::hash::{Hash, Hasher}; use std::iter::{Product, Sum}; use std::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign}; use itertools::Itertools; use num::bigint::{BigUint, RandBigInt}; use num::{Integer, One}; use rand::Rng; use serde::{Deserialize, Serialize}; use crate::field::field_types::Field; use crate::field::goldilocks_field::GoldilocksField; /// A field designed for use with the Crandall reduction algorithm. /// /// Its order is /// ```ignore /// P = 2**256 - 2**32 - 2**9 - 2**8 - 2**7 - 2**6 - 2**4 - 1 /// ``` #[derive(Copy, Clone, Serialize, Deserialize)] pub struct Secp256K1Base(pub [u64; 4]); fn biguint_from_array(arr: [u64; 4]) -> BigUint { BigUint::from_slice(&[ arr[0] as u32, (arr[0] >> 32) as u32, arr[1] as u32, (arr[1] >> 32) as u32, arr[2] as u32, (arr[2] >> 32) as u32, arr[3] as u32, (arr[3] >> 32) as u32, ]) } impl Secp256K1Base { fn to_canonical_biguint(&self) -> BigUint { let mut result = biguint_from_array(self.0); if result > Self::order() { result -= Self::order(); } result } fn from_biguint(val: BigUint) -> Self { Self( val.to_u64_digits() .into_iter() .pad_using(4, |_| 0) .collect::>()[..] .try_into() .expect("error converting to u64 array"), ) } } impl Default for Secp256K1Base { fn default() -> Self { Self::ZERO } } impl PartialEq for Secp256K1Base { fn eq(&self, other: &Self) -> bool { self.to_canonical_biguint() == other.to_canonical_biguint() } } impl Eq for Secp256K1Base {} impl Hash for Secp256K1Base { fn hash(&self, state: &mut H) { self.to_canonical_biguint().hash(state) } } impl Display for Secp256K1Base { fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { Display::fmt(&self.to_canonical_biguint(), f) } } impl Debug for Secp256K1Base { fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { Debug::fmt(&self.to_canonical_biguint(), f) } } impl Field for Secp256K1Base { // TODO: fix type PrimeField = GoldilocksField; const ZERO: Self = Self([0; 4]); const ONE: Self = Self([1, 0, 0, 0]); const TWO: Self = Self([2, 0, 0, 0]); const NEG_ONE: Self = Self([ 0xFFFFFFFEFFFFFC2E, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, ]); // TODO: fix const CHARACTERISTIC: u64 = 0; const TWO_ADICITY: usize = 1; // Sage: `g = GF(p).multiplicative_generator()` const MULTIPLICATIVE_GROUP_GENERATOR: Self = Self([5, 0, 0, 0]); // Sage: `g_2 = g^((p - 1) / 2)` const POWER_OF_TWO_GENERATOR: Self = Self::NEG_ONE; fn order() -> BigUint { BigUint::from_slice(&[ 0xFFFFFC2F, 0xFFFFFFFE, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, ]) } fn try_inverse(&self) -> Option { if self.is_zero() { return None; } // Fermat's Little Theorem Some(self.exp_biguint(&(Self::order() - BigUint::one() - BigUint::one()))) } #[inline] fn from_canonical_u64(n: u64) -> Self { Self([n, 0, 0, 0]) } #[inline] fn from_noncanonical_u128(n: u128) -> Self { Self([n as u64, (n >> 64) as u64, 0, 0]) } #[inline] fn from_noncanonical_u96(n: (u64, u32)) -> Self { Self([n.0, n.1 as u64, 0, 0]) } fn rand_from_rng(rng: &mut R) -> Self { Self::from_biguint(rng.gen_biguint_below(&Self::order())) } } impl Neg for Secp256K1Base { type Output = Self; #[inline] fn neg(self) -> Self { if self.is_zero() { Self::ZERO } else { Self::from_biguint(Self::order() - self.to_canonical_biguint()) } } } impl Add for Secp256K1Base { type Output = Self; #[inline] fn add(self, rhs: Self) -> Self { let mut result = self.to_canonical_biguint() + rhs.to_canonical_biguint(); if result >= Self::order() { result -= Self::order(); } Self::from_biguint(result) } } impl AddAssign for Secp256K1Base { #[inline] fn add_assign(&mut self, rhs: Self) { *self = *self + rhs; } } impl Sum for Secp256K1Base { fn sum>(iter: I) -> Self { iter.fold(Self::ZERO, |acc, x| acc + x) } } impl Sub for Secp256K1Base { type Output = Self; #[inline] #[allow(clippy::suspicious_arithmetic_impl)] fn sub(self, rhs: Self) -> Self { self + -rhs } } impl SubAssign for Secp256K1Base { #[inline] fn sub_assign(&mut self, rhs: Self) { *self = *self - rhs; } } impl Mul for Secp256K1Base { type Output = Self; #[inline] fn mul(self, rhs: Self) -> Self { Self::from_biguint( (self.to_canonical_biguint() * rhs.to_canonical_biguint()).mod_floor(&Self::order()), ) } } impl MulAssign for Secp256K1Base { #[inline] fn mul_assign(&mut self, rhs: Self) { *self = *self * rhs; } } impl Product for Secp256K1Base { #[inline] fn product>(iter: I) -> Self { iter.reduce(|acc, x| acc * x).unwrap_or(Self::ONE) } } impl Div for Secp256K1Base { type Output = Self; #[allow(clippy::suspicious_arithmetic_impl)] fn div(self, rhs: Self) -> Self::Output { self * rhs.inverse() } } impl DivAssign for Secp256K1Base { fn div_assign(&mut self, rhs: Self) { *self = *self / rhs; } }