use std::marker::PhantomData; use ethereum_types::U256; use itertools::Itertools; use maybe_rayon::*; use plonky2::field::extension::{Extendable, FieldExtension}; use plonky2::field::packed::PackedField; use plonky2::field::polynomial::PolynomialValues; use plonky2::field::types::Field; use plonky2::hash::hash_types::RichField; use plonky2::timed; use plonky2::util::timing::TimingTree; use plonky2::util::transpose; use crate::constraint_consumer::{ConstraintConsumer, RecursiveConstraintConsumer}; use crate::cross_table_lookup::Column; use crate::lookup::{eval_lookups, eval_lookups_circuit, permuted_cols}; use crate::memory::columns::{ is_channel, value_limb, ADDR_CONTEXT, ADDR_SEGMENT, ADDR_VIRTUAL, CONTEXT_FIRST_CHANGE, COUNTER, COUNTER_PERMUTED, IS_READ, NUM_COLUMNS, RANGE_CHECK, RANGE_CHECK_PERMUTED, SEGMENT_FIRST_CHANGE, TIMESTAMP, VIRTUAL_FIRST_CHANGE, }; use crate::memory::segments::Segment; use crate::memory::{NUM_CHANNELS, VALUE_LIMBS}; use crate::permutation::PermutationPair; use crate::stark::Stark; use crate::vars::{StarkEvaluationTargets, StarkEvaluationVars}; pub(crate) const NUM_PUBLIC_INPUTS: usize = 0; pub fn ctl_data() -> Vec> { let mut res = Column::singles([IS_READ, ADDR_CONTEXT, ADDR_SEGMENT, ADDR_VIRTUAL]).collect_vec(); res.extend(Column::singles((0..8).map(value_limb))); res.push(Column::single(TIMESTAMP)); res } pub fn ctl_filter(channel: usize) -> Column { Column::single(is_channel(channel)) } #[derive(Copy, Clone, Default)] pub struct MemoryStark { pub(crate) f: PhantomData, } #[derive(Clone, Debug)] pub(crate) struct MemoryOp { /// The channel this operation came from, or `None` if it's a dummy operation for padding. pub channel_index: Option, pub timestamp: usize, pub is_read: bool, pub context: usize, pub segment: Segment, pub virt: usize, pub value: U256, } impl MemoryOp { /// Generate a row for a given memory operation. Note that this does not generate columns which /// depend on the next operation, such as `CONTEXT_FIRST_CHANGE`; those are generated later. /// It also does not generate columns such as `COUNTER`, which are generated later, after the /// trace has been transposed into column-major form. fn to_row(&self) -> [F; NUM_COLUMNS] { let mut row = [F::ZERO; NUM_COLUMNS]; if let Some(channel) = self.channel_index { row[is_channel(channel)] = F::ONE; } row[TIMESTAMP] = F::from_canonical_usize(self.timestamp); row[IS_READ] = F::from_bool(self.is_read); row[ADDR_CONTEXT] = F::from_canonical_usize(self.context); row[ADDR_SEGMENT] = F::from_canonical_usize(self.segment as usize); row[ADDR_VIRTUAL] = F::from_canonical_usize(self.virt); for j in 0..VALUE_LIMBS { row[value_limb(j)] = F::from_canonical_u32((self.value >> (j * 32)).low_u32()); } row } } fn get_max_range_check(memory_ops: &[MemoryOp]) -> usize { memory_ops .iter() .tuple_windows() .map(|(curr, next)| { if curr.context != next.context { next.context - curr.context - 1 } else if curr.segment != next.segment { next.segment as usize - curr.segment as usize - 1 } else if curr.virt != next.virt { next.virt - curr.virt - 1 } else { next.timestamp - curr.timestamp - 1 } }) .max() .unwrap_or(0) } /// Generates the `_FIRST_CHANGE` columns and the `RANGE_CHECK` column in the trace. pub fn generate_first_change_flags_and_rc(trace_rows: &mut [[F; NUM_COLUMNS]]) { let num_ops = trace_rows.len(); for idx in 0..num_ops - 1 { let row = trace_rows[idx].as_slice(); let next_row = trace_rows[idx + 1].as_slice(); let context = row[ADDR_CONTEXT]; let segment = row[ADDR_SEGMENT]; let virt = row[ADDR_VIRTUAL]; let timestamp = row[TIMESTAMP]; let next_context = next_row[ADDR_CONTEXT]; let next_segment = next_row[ADDR_SEGMENT]; let next_virt = next_row[ADDR_VIRTUAL]; let next_timestamp = next_row[TIMESTAMP]; let context_changed = context != next_context; let segment_changed = segment != next_segment; let virtual_changed = virt != next_virt; let context_first_change = context_changed; let segment_first_change = segment_changed && !context_first_change; let virtual_first_change = virtual_changed && !segment_first_change && !context_first_change; let row = trace_rows[idx].as_mut_slice(); row[CONTEXT_FIRST_CHANGE] = F::from_bool(context_first_change); row[SEGMENT_FIRST_CHANGE] = F::from_bool(segment_first_change); row[VIRTUAL_FIRST_CHANGE] = F::from_bool(virtual_first_change); row[RANGE_CHECK] = if context_first_change { next_context - context - F::ONE } else if segment_first_change { next_segment - segment - F::ONE } else if virtual_first_change { next_virt - virt - F::ONE } else { next_timestamp - timestamp - F::ONE }; } } impl, const D: usize> MemoryStark { /// Generate most of the trace rows. Excludes a few columns like `COUNTER`, which are generated /// later, after transposing to column-major form. fn generate_trace_row_major(&self, mut memory_ops: Vec) -> Vec<[F; NUM_COLUMNS]> { memory_ops.sort_by_key(|op| (op.context, op.segment, op.virt, op.timestamp)); Self::pad_memory_ops(&mut memory_ops); let mut trace_rows = memory_ops .into_par_iter() .map(|op| op.to_row()) .collect::>(); generate_first_change_flags_and_rc(trace_rows.as_mut_slice()); trace_rows } /// Generates the `COUNTER`, `RANGE_CHECK_PERMUTED` and `COUNTER_PERMUTED` columns, given a /// trace in column-major form. fn generate_trace_col_major(trace_col_vecs: &mut [Vec]) { let height = trace_col_vecs[0].len(); trace_col_vecs[COUNTER] = (0..height).map(|i| F::from_canonical_usize(i)).collect(); let (permuted_inputs, permuted_table) = permuted_cols(&trace_col_vecs[RANGE_CHECK], &trace_col_vecs[COUNTER]); trace_col_vecs[RANGE_CHECK_PERMUTED] = permuted_inputs; trace_col_vecs[COUNTER_PERMUTED] = permuted_table; } fn pad_memory_ops(memory_ops: &mut Vec) { let num_ops = memory_ops.len(); let max_range_check = get_max_range_check(memory_ops); let num_ops_padded = num_ops.max(max_range_check + 1).next_power_of_two(); let to_pad = num_ops_padded - num_ops; let last_op = memory_ops.last().expect("No memory ops?").clone(); // We essentially repeat the last operation until our operation list has the desired size, // with a few changes: // - We change its channel to `None` to indicate that this is a dummy operation. // - We increment its timestamp in order to pass the ordering check. // - We make sure it's a read, sine dummy operations must be reads. for i in 0..to_pad { memory_ops.push(MemoryOp { channel_index: None, timestamp: last_op.timestamp + i + 1, is_read: true, ..last_op }); } } pub(crate) fn generate_trace(&self, memory_ops: Vec) -> Vec> { let mut timing = TimingTree::new("generate trace", log::Level::Debug); // Generate most of the trace in row-major form. let trace_rows = timed!( &mut timing, "generate trace rows", self.generate_trace_row_major(memory_ops) ); let trace_row_vecs: Vec<_> = trace_rows.into_iter().map(|row| row.to_vec()).collect(); // Transpose to column-major form. let mut trace_col_vecs = transpose(&trace_row_vecs); // A few final generation steps, which work better in column-major form. Self::generate_trace_col_major(&mut trace_col_vecs); let trace_polys = trace_col_vecs .into_iter() .map(|column| PolynomialValues::new(column)) .collect(); timing.print(); trace_polys } } impl, const D: usize> Stark for MemoryStark { const COLUMNS: usize = NUM_COLUMNS; const PUBLIC_INPUTS: usize = NUM_PUBLIC_INPUTS; fn eval_packed_generic( &self, vars: StarkEvaluationVars, yield_constr: &mut ConstraintConsumer

, ) where FE: FieldExtension, P: PackedField, { let one = P::from(FE::ONE); let timestamp = vars.local_values[TIMESTAMP]; let addr_context = vars.local_values[ADDR_CONTEXT]; let addr_segment = vars.local_values[ADDR_SEGMENT]; let addr_virtual = vars.local_values[ADDR_VIRTUAL]; let values: Vec<_> = (0..8).map(|i| vars.local_values[value_limb(i)]).collect(); let next_timestamp = vars.next_values[TIMESTAMP]; let next_is_read = vars.next_values[IS_READ]; let next_addr_context = vars.next_values[ADDR_CONTEXT]; let next_addr_segment = vars.next_values[ADDR_SEGMENT]; let next_addr_virtual = vars.next_values[ADDR_VIRTUAL]; let next_values: Vec<_> = (0..8).map(|i| vars.next_values[value_limb(i)]).collect(); // Each `is_channel` value must be 0 or 1. for c in 0..NUM_CHANNELS { let is_channel = vars.local_values[is_channel(c)]; yield_constr.constraint(is_channel * (is_channel - P::ONES)); } // The sum of `is_channel` flags, `has_channel`, must also be 0 or 1. let has_channel: P = (0..NUM_CHANNELS) .map(|c| vars.local_values[is_channel(c)]) .sum(); yield_constr.constraint(has_channel * (has_channel - P::ONES)); // If this is a dummy row (with no channel), it must be a read. This means the prover can // insert reads which never appear in the CPU trace (which are harmless), but not writes. let is_dummy = P::ONES - has_channel; let is_write = P::ONES - vars.local_values[IS_READ]; yield_constr.constraint(is_dummy * is_write); let context_first_change = vars.local_values[CONTEXT_FIRST_CHANGE]; let segment_first_change = vars.local_values[SEGMENT_FIRST_CHANGE]; let virtual_first_change = vars.local_values[VIRTUAL_FIRST_CHANGE]; let address_unchanged = one - context_first_change - segment_first_change - virtual_first_change; let range_check = vars.local_values[RANGE_CHECK]; let not_context_first_change = one - context_first_change; let not_segment_first_change = one - segment_first_change; let not_virtual_first_change = one - virtual_first_change; let not_address_unchanged = one - address_unchanged; // First set of ordering constraint: first_change flags are boolean. yield_constr.constraint(context_first_change * not_context_first_change); yield_constr.constraint(segment_first_change * not_segment_first_change); yield_constr.constraint(virtual_first_change * not_virtual_first_change); yield_constr.constraint(address_unchanged * not_address_unchanged); // Second set of ordering constraints: no change before the column corresponding to the nonzero first_change flag. yield_constr .constraint_transition(segment_first_change * (next_addr_context - addr_context)); yield_constr .constraint_transition(virtual_first_change * (next_addr_context - addr_context)); yield_constr .constraint_transition(virtual_first_change * (next_addr_segment - addr_segment)); yield_constr.constraint_transition(address_unchanged * (next_addr_context - addr_context)); yield_constr.constraint_transition(address_unchanged * (next_addr_segment - addr_segment)); yield_constr.constraint_transition(address_unchanged * (next_addr_virtual - addr_virtual)); // Third set of ordering constraints: range-check difference in the column that should be increasing. let computed_range_check = context_first_change * (next_addr_context - addr_context - one) + segment_first_change * (next_addr_segment - addr_segment - one) + virtual_first_change * (next_addr_virtual - addr_virtual - one) + address_unchanged * (next_timestamp - timestamp - one); yield_constr.constraint_transition(range_check - computed_range_check); // Enumerate purportedly-ordered log. for i in 0..8 { yield_constr .constraint(next_is_read * address_unchanged * (next_values[i] - values[i])); } eval_lookups(vars, yield_constr, RANGE_CHECK_PERMUTED, COUNTER_PERMUTED) } fn eval_ext_circuit( &self, builder: &mut plonky2::plonk::circuit_builder::CircuitBuilder, vars: StarkEvaluationTargets, yield_constr: &mut RecursiveConstraintConsumer, ) { let one = builder.one_extension(); let addr_context = vars.local_values[ADDR_CONTEXT]; let addr_segment = vars.local_values[ADDR_SEGMENT]; let addr_virtual = vars.local_values[ADDR_VIRTUAL]; let values: Vec<_> = (0..8).map(|i| vars.local_values[value_limb(i)]).collect(); let timestamp = vars.local_values[TIMESTAMP]; let next_addr_context = vars.next_values[ADDR_CONTEXT]; let next_addr_segment = vars.next_values[ADDR_SEGMENT]; let next_addr_virtual = vars.next_values[ADDR_VIRTUAL]; let next_values: Vec<_> = (0..8).map(|i| vars.next_values[value_limb(i)]).collect(); let next_is_read = vars.next_values[IS_READ]; let next_timestamp = vars.next_values[TIMESTAMP]; // Each `is_channel` value must be 0 or 1. for c in 0..NUM_CHANNELS { let is_channel = vars.local_values[is_channel(c)]; let constraint = builder.mul_sub_extension(is_channel, is_channel, is_channel); yield_constr.constraint(builder, constraint); } // The sum of `is_channel` flags, `has_channel`, must also be 0 or 1. let has_channel = builder.add_many_extension((0..NUM_CHANNELS).map(|c| vars.local_values[is_channel(c)])); let has_channel_bool = builder.mul_sub_extension(has_channel, has_channel, has_channel); yield_constr.constraint(builder, has_channel_bool); // If this is a dummy row (with no channel), it must be a read. This means the prover can // insert reads which never appear in the CPU trace (which are harmless), but not writes. let is_dummy = builder.sub_extension(one, has_channel); let is_write = builder.sub_extension(one, vars.local_values[IS_READ]); let is_dummy_write = builder.mul_extension(is_dummy, is_write); yield_constr.constraint(builder, is_dummy_write); let context_first_change = vars.local_values[CONTEXT_FIRST_CHANGE]; let segment_first_change = vars.local_values[SEGMENT_FIRST_CHANGE]; let virtual_first_change = vars.local_values[VIRTUAL_FIRST_CHANGE]; let address_unchanged = { let mut cur = builder.sub_extension(one, context_first_change); cur = builder.sub_extension(cur, segment_first_change); builder.sub_extension(cur, virtual_first_change) }; let range_check = vars.local_values[RANGE_CHECK]; let not_context_first_change = builder.sub_extension(one, context_first_change); let not_segment_first_change = builder.sub_extension(one, segment_first_change); let not_virtual_first_change = builder.sub_extension(one, virtual_first_change); let not_address_unchanged = builder.sub_extension(one, address_unchanged); let addr_context_diff = builder.sub_extension(next_addr_context, addr_context); let addr_segment_diff = builder.sub_extension(next_addr_segment, addr_segment); let addr_virtual_diff = builder.sub_extension(next_addr_virtual, addr_virtual); // First set of ordering constraint: traces are boolean. let context_first_change_bool = builder.mul_extension(context_first_change, not_context_first_change); yield_constr.constraint(builder, context_first_change_bool); let segment_first_change_bool = builder.mul_extension(segment_first_change, not_segment_first_change); yield_constr.constraint(builder, segment_first_change_bool); let virtual_first_change_bool = builder.mul_extension(virtual_first_change, not_virtual_first_change); yield_constr.constraint(builder, virtual_first_change_bool); let address_unchanged_bool = builder.mul_extension(address_unchanged, not_address_unchanged); yield_constr.constraint(builder, address_unchanged_bool); // Second set of ordering constraints: no change before the column corresponding to the nonzero first_change flag. let segment_first_change_check = builder.mul_extension(segment_first_change, addr_context_diff); yield_constr.constraint_transition(builder, segment_first_change_check); let virtual_first_change_check_1 = builder.mul_extension(virtual_first_change, addr_context_diff); yield_constr.constraint_transition(builder, virtual_first_change_check_1); let virtual_first_change_check_2 = builder.mul_extension(virtual_first_change, addr_segment_diff); yield_constr.constraint_transition(builder, virtual_first_change_check_2); let address_unchanged_check_1 = builder.mul_extension(address_unchanged, addr_context_diff); yield_constr.constraint_transition(builder, address_unchanged_check_1); let address_unchanged_check_2 = builder.mul_extension(address_unchanged, addr_segment_diff); yield_constr.constraint_transition(builder, address_unchanged_check_2); let address_unchanged_check_3 = builder.mul_extension(address_unchanged, addr_virtual_diff); yield_constr.constraint_transition(builder, address_unchanged_check_3); // Third set of ordering constraints: range-check difference in the column that should be increasing. let context_diff = { let diff = builder.sub_extension(next_addr_context, addr_context); builder.sub_extension(diff, one) }; let context_range_check = builder.mul_extension(context_first_change, context_diff); let segment_diff = { let diff = builder.sub_extension(next_addr_segment, addr_segment); builder.sub_extension(diff, one) }; let segment_range_check = builder.mul_extension(segment_first_change, segment_diff); let virtual_diff = { let diff = builder.sub_extension(next_addr_virtual, addr_virtual); builder.sub_extension(diff, one) }; let virtual_range_check = builder.mul_extension(virtual_first_change, virtual_diff); let timestamp_diff = { let diff = builder.sub_extension(next_timestamp, timestamp); builder.sub_extension(diff, one) }; let timestamp_range_check = builder.mul_extension(address_unchanged, timestamp_diff); let computed_range_check = { let mut sum = builder.add_extension(context_range_check, segment_range_check); sum = builder.add_extension(sum, virtual_range_check); builder.add_extension(sum, timestamp_range_check) }; let range_check_diff = builder.sub_extension(range_check, computed_range_check); yield_constr.constraint_transition(builder, range_check_diff); // Enumerate purportedly-ordered log. for i in 0..8 { let value_diff = builder.sub_extension(next_values[i], values[i]); let zero_if_read = builder.mul_extension(address_unchanged, value_diff); let read_constraint = builder.mul_extension(next_is_read, zero_if_read); yield_constr.constraint(builder, read_constraint); } eval_lookups_circuit( builder, vars, yield_constr, RANGE_CHECK_PERMUTED, COUNTER_PERMUTED, ) } fn constraint_degree(&self) -> usize { 3 } fn permutation_pairs(&self) -> Vec { vec![ PermutationPair::singletons(RANGE_CHECK, RANGE_CHECK_PERMUTED), PermutationPair::singletons(COUNTER, COUNTER_PERMUTED), ] } } #[cfg(test)] pub(crate) mod tests { use std::collections::{HashMap, HashSet}; use anyhow::Result; use ethereum_types::U256; use plonky2::plonk::config::{GenericConfig, PoseidonGoldilocksConfig}; use rand::prelude::SliceRandom; use rand::Rng; use crate::memory::memory_stark::{MemoryOp, MemoryStark}; use crate::memory::segments::Segment; use crate::memory::NUM_CHANNELS; use crate::stark_testing::{test_stark_circuit_constraints, test_stark_low_degree}; pub(crate) fn generate_random_memory_ops(num_ops: usize, rng: &mut R) -> Vec { let mut memory_ops = Vec::new(); let mut current_memory_values: HashMap<(usize, Segment, usize), U256> = HashMap::new(); let num_cycles = num_ops / 2; for clock in 0..num_cycles { let mut used_indices = HashSet::new(); let mut new_writes_this_cycle = HashMap::new(); let mut has_read = false; for _ in 0..2 { let mut channel_index = rng.gen_range(0..NUM_CHANNELS); while used_indices.contains(&channel_index) { channel_index = rng.gen_range(0..NUM_CHANNELS); } used_indices.insert(channel_index); let is_read = if clock == 0 { false } else { !has_read && rng.gen() }; has_read = has_read || is_read; let (context, segment, virt, vals) = if is_read { let written: Vec<_> = current_memory_values.keys().collect(); let &(mut context, mut segment, mut virt) = written[rng.gen_range(0..written.len())]; while new_writes_this_cycle.contains_key(&(context, segment, virt)) { (context, segment, virt) = *written[rng.gen_range(0..written.len())]; } let &vals = current_memory_values .get(&(context, segment, virt)) .unwrap(); (context, segment, virt, vals) } else { // TODO: with taller memory table or more padding (to enable range-checking bigger diffs), // test larger address values. let mut context = rng.gen_range(0..40); let segments = [Segment::Code, Segment::Stack, Segment::MainMemory]; let mut segment = *segments.choose(rng).unwrap(); let mut virt = rng.gen_range(0..20); while new_writes_this_cycle.contains_key(&(context, segment, virt)) { context = rng.gen_range(0..40); segment = *segments.choose(rng).unwrap(); virt = rng.gen_range(0..20); } let val = U256(rng.gen()); new_writes_this_cycle.insert((context, segment, virt), val); (context, segment, virt, val) }; let timestamp = clock * NUM_CHANNELS + channel_index; memory_ops.push(MemoryOp { channel_index: Some(channel_index), timestamp, is_read, context, segment, virt, value: vals, }); } for (k, v) in new_writes_this_cycle { current_memory_values.insert(k, v); } } memory_ops } #[test] fn test_stark_degree() -> Result<()> { const D: usize = 2; type C = PoseidonGoldilocksConfig; type F = >::F; type S = MemoryStark; let stark = S { f: Default::default(), }; test_stark_low_degree(stark) } #[test] fn test_stark_circuit() -> Result<()> { const D: usize = 2; type C = PoseidonGoldilocksConfig; type F = >::F; type S = MemoryStark; let stark = S { f: Default::default(), }; test_stark_circuit_constraints::(stark) } }