
D
RA
FT

The Polygon Zero zkEVM

DRAFT
November 22, 2023

Abstract

We describe the design of Polygon Zero’s zkEVM, ...

1

D
RA
FT

Contents

1 Introduction 3

2 STARK framework 3
2.1 Cost model . 3
2.2 Field selection . 3
2.3 Cross-table lookups . 4
2.4 Range-checks . 5

2.4.1 What to range-check? 5
2.4.2 Lookup Argument . 6
2.4.3 Constraints . 8

3 Tables 9
3.1 CPU . 9
3.2 Arithmetic . 9

3.2.1 Auxiliary columns . 10
3.3 Byte Packing . 11
3.4 Logic . 13
3.5 Memory . 14

3.5.1 Virtual memory . 15
3.5.2 Timestamps . 16

3.6 Keccak-f . 16
3.6.1 Keccak-f Permutation 16
3.6.2 Columns . 18
3.6.3 Constraints . 19

3.7 KeccakSponge . 19

4 Merkle Patricia tries 22
4.1 Internal memory format . 22
4.2 Prover input format . 23

5 CPU logic 23
5.1 Kernel . 23
5.2 Simple opcodes VS Syscalls 26
5.3 Privileged instructions . 27
5.4 Stack handling . 28
5.5 Gas handling . 29
5.6 Exceptions . 29

2

D
RA
FT

1 Introduction

TODO

2 STARK framework

2.1 Cost model

Our zkEVM is designed for efficient verification by STARKs [1], particularly
by an AIR with degree 3 constraints. In this model, the prover bottleneck is
typically constructing Merkle trees, particularly constructing the tree contain-
ing low-degree extensions of witness polynomials.

2.2 Field selection

Our zkEVM is designed to have its execution traces encoded in a particular
prime field Fp, with p = 264 − 232 + 1. A nice property of this field is that
it can represent the results of many common u32 operations. For example,
(widening) u32 multiplication has a maximum value of (232−1)2, which is less
than p. In fact a u32 multiply-add has a maximum value of p−1, so the result
can be represented with a single field element, although if we were to add a
carry in bit, this no longer holds.

This field also enables a very efficient reduction method. Observe that

264 ≡ 232 − 1 (mod p)

and consequently

296 ≡ 232(232 − 1) (mod p)

≡ 264 − 232 (mod p)

≡ −1 (mod p).

To reduce a 128-bit number n, we first rewrite n as n0 + 264n1 + 296n2, where
n0 is 64 bits and n1, n2 are 32 bits each. Then

n ≡ n0 + 264n1 + 296n2 (mod p)

≡ n0 + (232 − 1)n1 − n2 (mod p)

After computing (232 − 1)n1, which can be done with a shift and subtraction,
we add the first two terms, subtracting p if overflow occurs. We then subtract
n2, adding p if underflow occurs.

3

D
RA
FT

At this point we have reduced n to a u64. This partial reduction is adequate
for most purposes, but if we needed the result in canonical form, we would
perform a final conditional subtraction.

2.3 Cross-table lookups

The various STARK tables carry out independent operations, but on shared
values. We need to check that the shared values are identical in all the STARKs
that require them. This is where cross-table lookups (CTLs) come in handy.

Suppose STARK S1 requires an operation – say Op – that is carried out
by another STARK S2. Then S1 writes the input and output of Op in its own
table, and provides the inputs to S2. S2 also writes the inputs and outputs in
its rows, and the table’s constraints check that Op is carried out correctly. We
then need to ensure that the inputs and outputs are the same in S1 and S2.

In other words, we need to ensure that the rows – reduced to the input
and output columns – of S1 calling Op are permutations of the rows of S2 that
carry out Op.

To prove this, the first step is to only select the rows of interest in S1 and
S2, and filter out the rest. Let f 1 be the filter for S1 and f 2 the filter for S2.
f 1 and f 2 are constrained to be in {0, 1}. f 1 = 1 (resp. f 2 = 1) whenever
the row at hand carries out Op in S1 (resp. in S2), and 0 otherwise. Let also
(α, β) be two random challenges.

The idea is to create subtables S ′1 and S ′2 of S1 and S2 respectively, such
that f 1 = 1 and f 2 = 1 for all their rows. The columns in the subtables are
limited to the ones whose values must be identical (the inputs and outputs of
Op in our example).

Let {c1,i}mi=1 be the columns in S ′1 an {c2,i}mi=1 be the columns in S ′2.
The prover defines a “running product” Z for S ′1 such that:

ZS1
n−1 = 1

ZS1
i+1 = ZS1

i · [f 1
i ·
(m−1∑

j=0

αj · c1,ji + β
)

+ (1− f 1
i)]

The second equation “selects” the terms of interest thanks to f 1 and filters
out the rest.

Similarly, the prover constructs a running product ZS2for S2. Note that Z
is computed “upside down”: we start with Zn−1 = 1 and the final product is
in Z0.

4

D
RA
FT

On top of the constraints to check that the running products were correctly
constructed, the verifier checks that ZS1

0 = ZS2
0 . This ensures that the columns

in S ′1 and the columns in S ′2 are permutations of each other.
To sum up, for each STARK S, the prover:

1. constructs a running product P l
i for each table looking into S (called

looking products here),

2. constructs a running product P S for S (called looked product here),

3. sends the final value for each running product P l
i,0 and P S

0 to the verifier,

4. sends a commitment to P l
i and P S to the verifier.

Then, for each STARK S, the verifier:

1. computes the product P =
∏

i P
l
i,0,

2. checks that P = P S
0 ,

3. checks that each P l
i and P S was correctly constructed.

2.4 Range-checks

In most cases, tables deal with U256 words, split into 32-bit limbs (to avoid
overflowing the field). To prevent a malicious prover from cheating, it is crucial
to range-check those limbs.

2.4.1 What to range-check?

One can note that every element that ever appears on the stack has been
pushed. Therefore, enforcing a range-check on pushed elements is enough to
range-check all elements on the stack. Similarly, all elements in memory must
have been written prior, and therefore it is enough to range-check memory
writes. However, range-checking the PUSH and MSTORE opcodes is not
sufficient.

1. Pushes and memory writes for “MSTORE 32BYTES” are range-checked
in “BytePackingStark”.

2. Syscalls, exceptions and prover inputs are range-checked in “Arithmetic-
Stark”.

5

D
RA
FT

3. The inputs and outputs of binary and ternary arithmetic operations are
range-checked in “ArithmeticStark”.

4. The inputs’ bits of logic operations are checked to be either 1 or 0 in
“LogicStark”. Since “LogicStark” only deals with bitwise operations,
this is enough to have range-checked outputs as well.

5. The inputs of Keccak operations are range-checked in “KeccakStark”.
The output digest is written as bytes in “KeccakStark”. Those bytes are
used to reconstruct the associated 32-bit limbs checked against the limbs
in “CpuStark”. This implictly ensures that the output is range-checked.

Note that some operations do not require a range-check:

1. “MSTORE GENERAL” read the value to write from the stack. Thus,
the written value was already range-checked by a previous push.

2. “EQ” reads two – already range-checked – elements on the stack, and
checks they are equal. The output is either 0 or 1, and does therefore
not need to be checked.

3. “NOT” reads one – already range-checked – element. The result is con-
strained to be equal to 0xFFFFFFFF − input, which implicitly enforces
the range check.

4. “PC”: the program counter cannot be greater than 232 in user mode.
Indeed, the user code cannot be longer than 232, and jumps are con-
strainted to be JUMPDESTs. Moreover, in kernel mode, every jump is
towards a location within the kernel, and the kernel code is smaller than
232. These two points implicitly enforce PC’s range check.

5. “GET CONTEXT”, “DUP” and “SWAP” all read and push values that
were already written in memory. The pushed values were therefore al-
ready range-checked.

Range-checks are performed on the range [0, 216−1], to limit the trace length.

2.4.2 Lookup Argument

To enforce the range-checks, we leverage logUp, a lookup argument by Ul-
rich Häbock. Given a looking table s = (s1, ..., sn) and a looked table t =
(t1, ..., tm), the goal is to prove that

∀1 ≤ i ≤ n,∃1 ≤ j ≤ r such that si = tj

6

https://eprint.iacr.org/2022/1530.pdf

D
RA
FT

In our case, t = (0, .., 216 − 1) and s is composed of all the columns in each
STARK that must be range-checked.

The logUp paper explains that proving the previous assertion is actually
equivalent to proving that there exists a sequence l such that:

n∑
i=1

1

X − si
=

r∑
j=1

lj
X − tj

The values of s can be stored in c different columns of length n each. In
that case, the equality becomes:

c∑
k=1

n∑
i=1

1

X − ski
=

r∑
j=1

lj
X − tj

The ‘multiplicity’ mi of value ti is defined as the number of times ti appears
in s. In other words:

mi = |sj ∈ s; sj = ti|

Multiplicities provide a valid sequence of values in the previously stated
equation. Thus, if we store the multiplicities, and are provided with a challenge
α, we can prove the lookup argument by ensuring:

c∑
k=1

n∑
i=1

1

α− ski
=

r∑
j=1

mj

α− tj

However, the equation is too high degree. To circumvent this issue, Häbock
suggests providing helper columns hi and d such that at a given row i:

hki =
1

α + ski
∀1 ≤ k ≤ c

di =
1

α + ti

The h helper columns can be batched together to save columns. We can
batch at most contraint degree − 1 helper functions together. In our case,
we batch them 2 by 2. At row i, we now have:

hki =
1

α + s2ki
+

1

α + s2k+1
i

∀1 ≤ k ≤ c/2

7

D
RA
FT

If c is odd, then we have one extra helper column:

h
c/2+1
i =

1

α + sci

For clarity, we will assume that c is even in what follows.
Let g be a generator of a subgroup of order n. We extrapolate h,m and

d to get polynomials such that, for f ∈ {hk,m, g}: f(gi) = fi. We can define
the following polynomial:

Z(x) :=
n∑

i=1

[c/2∑
k=1

hk(x)−m(x) ∗ d(x)
]

2.4.3 Constraints

With these definitions and a challenge α, we can finally check that the assertion
holds with the following constraints:

Z(1) = 0

Z(gα) = Z(α) +

c/2∑
k=1

hk(α)−m(α)d(α)

These ensure that We also need to ensure that hk is well constructed for all
1 ≤ k ≤ c/2:

h(α)k · (α + s2k) · (α + s2k+1) = (α + s2k) + (α + s2k+1)

Note: if c is odd, we have one unbatched helper column hc/2+1 for which
we need a last constraint:

h(α)c/2+1 · (α + sc) = 1

Finally, the verifier needs to ensure that the table t was also correctly
computed. In each STARK, t is computed starting from 0 and adding at most
1 at each row. This construction is constrained as follows:

1. t(1) = 0

2. (t(gi+1)− t(gi)) · ((t(gi+1)− t(gi))− 1) = 0

3. t(gn−1) = 216 − 1

8

D
RA
FT

3 Tables

3.1 CPU

TODO

3.2 Arithmetic

Each row of the arithmetic table corresponds to a binary or ternary arithmetic
operation. Each of these operations has an associated flag fop in the table, such
that fop = 1 whenever the operation is op and 0 otherwise. The full list of
operations carried out by the table is as follows:

Binary operations:

• basic operations: “add”, “mul”, “sub” and “div”,

• comparisons: “lt” and “gt”,

• shifts: “shr” and “shl”,

• “byte”: given x1, x2, returns the x1-th “byte” in x2,

• modular operations: “mod”, “AddFp254”, “MulFp254” and “SubFp254”,

• range-check: no operation is performed, as this is only used to range-
check the input and output limbs in the range [0, 216 − 1].

For ‘mod’, the second input is the modulus. “AddFp254”, “MulFp254” and
“SubFp254” are modular operations modulo “Fp254’‘ – the prime for the BN
curve’s base field.

Ternary operations: There are three ternary operations: modular addi-
tion “AddMod”, modular multiplication “MulMod” and modular subtraction
“SubMod”.

Besides the flags, the arithmetic table needs to store the inputs, output and
some auxiliary values necessary to constraints. The input and output values
are range-checked to ensure their canonical representation. Inputs are 256-bits
words. To avoid having too large a range-check, inputs are therefore split into
sixteen 16-bits limbs, and range-checked in the range [0, 216 − 1].

Overall, the table comprises the following columns:

• 17 columns for the operation flags fop,

9

D
RA
FT

• 1 column op containing the opcode,

• 16 columns for the 16-bit limbs x0,i of the first input x0,

• 16 columns for the 16-bit limbs x1,i of the second input x1,

• 16 columns for the 16-bit limbs x2,i of the third input x2,

• 16 columns for the 16-bit limbs ri of the output r,

• 32 columns for auxiliary values auxi,

• 1 column range counter containing values in the range [0, 216 − 1], for
the range-check,

• 1 column storing the frequency of appearance of each value in the range
[0, 216 − 1].

Note on op: The opcode column is only used for range-checks. For opti-
mization purposes, we check all arithmetic operations against the cpu table
together. To ensure correctness, we also check that the operation’s opcode
corresponds to its behavior. But range-check is not associated to a unique op-
eration: any operation in the cpu table might require its values to be checked.
Thus, the arithmetic table cannot know its opcode in advance: it needs to
store the value provided by the cpu table.

3.2.1 Auxiliary columns

The way auxiliary values are leveraged to efficiently check correctness is not
trivial, but it is explained in detail in each dedicated file. Overall, five files
explain the implementations of the various checks. Refer to:

1. “mul.rs” for details on multiplications.

2. “addcy.rs” for details on addition, subtraction, “lt” and “gt”.

3. “modular.rs” for details on how modular operations are checked. Note
that even though “div” and “mod” are generated and checked in a sep-
arate file, they leverage the logic for modular operations described in
“modular.rs”.

4. “byte” for details on how “byte” is checked.

5. “shift.rs” for details on how shifts are checked.

10

D
RA
FT

Note on “lt” and “gt”: For “lt” and “gt”, auxiliary columns hold the
difference d between the two inputs x1, x2. We can then treat them similarly
to subtractions by ensuring that x1−x2 = d for “lt” and x2−x1 = d for “gt”.
An auxiliary column cy is used for the carry in additions and subtractions. In
the comparisons case, it holds the overflow flag. Contrary to subtractions, the
output of “lt” and “gt” operations is not d but cy.

Note on “div”: It might be unclear why “div” and “mod” are dealt with
in the same file.

Given numerator and denominator n, d, we compute, like for other modular
operations, the quotient q and remainder rem:

div(x1, x2) = q ∗ x2 + rem

. We then set the associated auxiliary columns to rem and the output to q.
This is why “div” is essentially a modulo operation, and can be addressed

in almost the same way as “mod”. The only difference is that in the “mod”
case, the output is rem and the auxiliary value is q.

Note on shifts: “shr” and “shl” are internally constrained as “div” and
“mul” respectively with shifted operands. Indeed, given inputs s, x, the output
should be x >> s for “shr” (resp. x << s for “shl”). Since shifts are binary
operations, we can use the third input columns to store sshifted = 1 << s.
Then, we can use the “div” logic (resp. “mul” logic) to ensure that the output
is x

sshifted
(resp. x ∗ sshifted).

3.3 Byte Packing

The BytePacking STARK module is used for reading and writing non-empty
byte sequences of length at most 32 to memory. The ”packing” term highlights
that reading a sequence in memory will pack the bytes into an EVM word (i.e.
U256), while the ”unpacking” operation consists in breaking down an EVM
word into its byte sequence and writing it to memory.

This allows faster memory copies between two memory locations, as well
as faster memory reset (see memcpy.asm and memset.asm modules).

The ‘BytePackingStark’ table will have ` rows per packing/unpacking op-
eration, where 0 < ` ≤ 32 is the length of the sequence being processed.

Each row contains the following columns:

1. 5 columns containing information on the initial memory address from
which the sequence starts (namely a flag differentiating read and write

11

https://github.com/0xPolygonZero/plonky2/blob/main/evm/src/cpu/kernel/asm/memory/memcpy.asm
https://github.com/0xPolygonZero/plonky2/blob/main/evm/src/cpu/kernel/asm/memory/memset.asm

D
RA
FT

operations, address context, segment and offset values, as well as times-
tamp),

2. fend, a flag indicating the end of a sequence,

3. 32 columns bi indicating the index of the byte being read/written at a
given row,

4. 32 columns vi indicating the values of the bytes that have been read or
written during a sequence,

5. 2 columns ri needed for range-checking the byte values.

Notes on columns generation: Whenever a byte unpacking operation is
called, the value val is read from the stack, but because the EVM and the
STARKs use different endianness, we need to convert val to a little-endian
byte sequence. Only then do we resize it to the appropriate length, and prune
extra zeros and higher bytes in the process. Finally, we reverse the byte order
and write this new sequence into the vi columns of the table.

Whenever the operation is a byte packing, the bytes are read one by one
from memory and stored in the vi columns of the BytePackingStark table.

Note that because of the different endianness on the memory and EVM
sides, we generate rows starting with the final virtual address value (and the
associated byte). We decrement the address at each row.

The bi columns hold a boolean value. bi = 1 whenever we are currently
reading or writing the i-th element in the byte sequence. bi = 0 otherwise.

Cross-table lookups: The read or written bytes need to be checked against
both the cpu and the memory tables. Whenever we call MSTORE 32BYTES,
MLOAD 32BYTES or PUSH on the cpu side, we make use of ‘BytePackingStark’
to make sure we are carrying out the correct operation on the correct values.
For this, we check that the following values correspond:

1. the address (comprising the context, the segment, and the virtual ad-
dress),

2. the length of the byte sequence,

3. the timestamp,

4. the value (either written to or read from the stack)

12

D
RA
FT

On the other hand, we need to make sure that the read and write operations
correspond to the values read or stored on the memory side. We therefore
need a CTL for each byte, checking that the following values are identical in
‘MemoryStark’ and ‘BytePackingStark’:

1. a flag indicating whether the operation is a read or a write,

2. the address (context, segment and virtual address),

3. the byte (followed by 0s to make sure the memory address contains a
byte and not a U256 word),

4. the timestamp

Note on range-check: Range-checking is necessary whenever we do a mem-
ory unpacking operation that will write values to memory. These values are
constrained by the range-check to be 8-bit values, i.e. fitting between 0 and
255 included. While range-checking values read from memory is not necessary,
because we use the same byte values columns for both read and write oper-
ations, this extra condition is enforced throughout the whole trace regardless
of the operation type.

3.4 Logic

Each row of the logic table corresponds to one bitwise logic operation: either
AND, OR or XOR. Each input for these operations is represented as 256 bits,
while the output is stored as eight 32-bit limbs.

Each row therefore contains the following columns:

1. fand, an “is and” flag, which should be 1 for an OR operation and 0
otherwise,

2. for, an “is or” flag, which should be 1 for an OR operation and 0 other-
wise,

3. fxor, an “is xor” flag, which should be 1 for a XOR operation and 0
otherwise,

4. 256 columns x1,i for the bits of the first input x1,

5. 256 columns x2,i for the bits of the second input x2,

6. 8 columns ri for the 32-bit limbs of the output r.

13

D
RA
FT

Note that we need all three flags because we need to be able to distinguish
between an operation row and a padding row – where all flags are set to 0.

The subdivision into bits is required for the two inputs as the table carries
out bitwise operations. The result, on the other hand, is represented in 32-bit
limbs since we do not need individual bits and can therefore save the remaining
248 columns. Moreover, the output is checked against the cpu, which stores
values in the same way.

3.5 Memory

For simplicity, let’s treat addresses and values as individual field elements.
The generalization to multi-element addresses and values is straightforward.

Each row of the memory table corresponds to a single memory operation
(a read or a write), and contains the following columns:

1. a, the target address

2. r, an “is read” flag, which should be 1 for a read or 0 for a write

3. v, the value being read or written

4. τ , the timestamp of the operation

The memory table should be ordered by (a, τ). Note that the correctness of
the memory could be checked as follows:

1. Verify the ordering by checking that (ai, τi) ≤ (ai+1, τi+1) for each con-
secutive pair.

2. Enumerate the purportedly-ordered log while tracking the “current”
value of v, which is initially zero.1

(a) Upon observing an address which doesn’t match that of the previous
row, if the operation is a read, check that v = 0.

(b) Upon observing a write, don’t constrain v.

(c) Upon observing a read at timestamp τi which isn’t the first opera-
tion at this address, check that vi = vi−1.

1EVM memory is zero-initialized.

14

D
RA
FT

The ordering check is slightly involved since we are comparing multiple
columns. To facilitate this, we add an additional column e, where the prover
can indicate whether two consecutive addresses changed. An honest prover
will set

ei ←

{
1 if ai 6= ai+1,

0 otherwise.

We also introduce a range-check column c, which should hold:

ci ←

{
ai+1 − ai − 1 if ei = 1,

τi+1 − τi otherwise.

The extra −1 ensures that the address actually changed if ei = 1. We then
impose the following transition constraints:

1. ei(ei − 1) = 0,

2. (1− ei)(ai+1 − ai) = 0,

3. ci < 232.

The last constraint emulates a comparison between two addresses or times-
tamps by bounding their difference; this assumes that all addresses and times-
tamps fit in 32 bits and that the field is larger than that.

3.5.1 Virtual memory

In the EVM, each contract call has its own address space. Within that address
space, there are separate segments for code, main memory, stack memory,
calldata, and returndata. Thus each address actually has three compoments:

1. an execution context, representing a contract call,

2. a segment ID, used to separate code, main memory, and so forth, and so
on

3. a virtual address.

The comparisons now involve several columns, which requires some minor
adaptations to the technique described above; we will leave these as an exercise
to the reader.

15

D
RA
FT

3.5.2 Timestamps

Memory operations are sorted by address a and timestamp τ . For a memory
operation in the CPU, we have:

τ = NUM CHANNELS× cycle + channel.

Since a memory channel can only hold at most one memory operation, every
CPU memory operation’s timestamp is unique.

Note that it doesn’t mean that all memory operations have unique times-
tamps. There are two exceptions:

• Before bootstrapping, we write some global metadata in memory. These
extra operations are done at timestamp τ = 0.

• Some tables other than CPU can generate memory operations, like Kec-
cakSponge. When this happens, these operations all have the timestamp
of the CPU row of the instruction which invoked the table (for Keccak-
Sponge, KECCAK GENERAL).

3.6 Keccak-f

This table computes the Keccak-f[1600] permutation.

3.6.1 Keccak-f Permutation

To explain how this table is structured, we first need to detail how the permu-
tation is computed. This page gives a pseudo-code for the permutation. Our
implementation differs slightly – but remains equivalent – for optimization and
constraint degree reasons.

Let:

• S be the sponge width (S = 25 in our case)

• NUM ROUNDS be the number of Keccak rounds (NUM ROUNDS = 24)

• RC a vector of round constants of size NUM ROUNDS

• I be the input of the permutation, comprised of S 64-bit elements

The first step is to reshape I into a 5× 5 matrix. We initialize the state A
of the sponge with I:

A[x, y] := I[x, y] ∀x, y ∈ {0..4}

16

https://keccak.team/keccak_specs_summary.html

D
RA
FT

We store A in the table, and subdivide each 64-bit element into two 32-bit
limbs. Then, for each round i, we proceed as follows:

1. First, we define C[x] := xor4i=0A[x, i]. We store C as bits in the table.
This is because we need to apply a rotation on its elements’ bits and
carry out xor operations in the next step.

2. Then, we store a second vector C ′ in bits, such that:

C ′[x, z] = C[x, z] xor C[x− 1, z] xor C[x+ 1, z − 1]

.

3. We then need to store the updated value of A:

A′[x, y] = A[x, y] xor C[x, y] xor C ′[x, y]

Note that this is equivalent to the equation in the official Keccak-f de-
scription:

A′[x, y] = A[x, y] xor C[x− 1, z] xor C[x+ 1, z − 1]

.

4. The previous three points correspond to the θ step in Keccak-f. We can
now move on to the ρ and π steps. These steps are written as:

B[y, 2× x+ 3× y] := rot(A′[x, y], r[x, y])

where rot(a, s) is the bitwise cyclic shift operation, and r is the matrix
of rotation offsets. We do not need to store B: B’s bits are only a
permutation of A′’s bits.

5. The χ step updates the state once again, and we store the new values:

A′′[x, y] := B[x, y] xor (not B[x+ 1, y] and B[x+ 2, y])

Because of the way we carry out constraints (as explained below), we
do not need to store the individual bits for A′′: we only need the 32-bit
limbs.

6. The final step, ι, consists in updating the first element of the state as
follows:

A′′′[0, 0] = A′′[0, 0] xor RC[i]

17

D
RA
FT

where
A′′′[x, y] = A′′[x, y]∀(x, y) 6= (0, 0)

Since only the first element is updated, we only need to store A′′′[0, 0]
of this updated state. The remaining elements are fetched from A′′.
However, because of the bitwise xor operation, we do need columns for
the bits of A′′[0, 0].

Note that all permutation elements are 64-bit long. But they are stored as
32-bit limbs so that we do not overflow the field.

It is also important to note that all bitwise logic operations (xor , not

and and) are checked in this table. This is why we need to store the bits of
most elements. The logic table can only carry out eight 32-bit logic operations
per row. Thus, leveraging it here would drastically increase the number of
logic rows, and incur too much overhead in proving time.

3.6.2 Columns

Using the notations from the previous section, we can now list the columns in
the table:

1. NUM ROUNDS = 24 columns ci to determine which round is currently being
computed. ci = 1 when we are in the i-th round, and 0 otherwise. These
columns’ purpose is to ensure that the correct round constants are used
at each round.

2. 1 column t which stores the timestamp at which the Keccak operation
was called in the cpu. This column enables us to ensure that inputs
and outputs are consistent between the cpu, keccak-sponge and keccak-f
tables.

3. 5× 5× 2 = 50columns to store the elements of A. As a reminder, each
64-bit element is divided into two 32-bit limbs, and A comprises S = 25
elements.

4. 5× 64 = 320 columns to store the bits of the vector C.

5. 5× 64 = 320 columns to store the bits of the vector C ′.

6. 5× 5× 64 = 1600 columns to store the bits of A′.

7. 5× 5× 2 = 50 columns to store the 32-bit limbs of A′′.

8. 64 columns to store the bits of A′′[0, 0].

18

D
RA
FT

9. 2 columns to store the two limbs of A′′′[0, 0].

In total, this table comprises 2,431 columns.

3.6.3 Constraints

Some constraints checking that the elements are computed correctly are not
straightforward. Let us detail them here.

First, it is important to highlight the fact that a xor between two elements
is of degree 2. Indeed, for x xor y, the constraint is x+y−2×x×y, which is
of degree 2. This implies that a xor between 3 elements is of degree 3, which
is the maximal constraint degree for our STARKs.

We can check that C ′[x, z] = C[x, z] xor C[x− 1, z] xor C[x + 1, z − 1].
However, we cannot directly check that C[x] = xor4i=0A[x, i], as it would be a
degree 5 constraint. Instead, we use C ′ for this constraint. We see that:

xor4i=0A
′[x, i, z] = C ′[x, z]

This implies that the difference d =
∑4

i=0A
′[x, i, z]− C ′[x, z] is either 0, 2 or

4. We can therefore enforce the following degree 3 constraint instead:

d× (d− 2)× (d− 4) = 0

Additionally, we have to check that A′ is well constructed. We know that
A′ should be such that A′[x, y, z] = A[x, y, z] xor C[x, z] xor C ′[x, z]. Since
we do not have the bits of A elements but the bits of A′ elements, we check
the equivalent degree 3 constraint:

A[x, y, z] = A′[x, y, z] xor C[x, z] xor C ′[x, z]

Finally, the constraints for the remaining elements, A′′ and A′′′ are straight-
forward: A′′ is a three-element bitwise xor where all bits involved are already
storedn and A′′′[0, 0] is the output of a simple bitwise xor with a round con-
stant.

3.7 KeccakSponge

This table computes the Keccak256 hash, a sponge-based hash built on top of
the Keccak-f[1600] permutation. An instance of KeccakSponge takes as input
a Memory address a, a length l, and computes the Keccak256 digest of the
memory segment starting at a and of size l. An instance can span many rows,
each individual row being a single call to the Keccak table. Note that all the

19

D
RA
FT

read elements must be bytes; the proof will be unverifiable if this is not the
case. Following the Keccak specifications, the input string is padded to the
next multiple of 136 bytes. Each row contains the following columns:

• Read bytes:

– 3 address columns: context, segment and the offset virt of a.

– timestamp: the timestamp which will be used for all memory reads
of this instance.

– already absorbed bytes: keeps track of how many bytes have
been hashed in the current instance. At the end of an instance,
we should have absorbed l bytes in total.

– KECCAK RATE BYTES block bytes columns: the bytes being absorbed
at this row. They are read from memory and will be XORed to the
rate part of the current state.

• Input columns:

– KECCAK RATE U32S original rate u32s columns: hold the rate
part of the state before XORing it with block bytes. At the be-
ginning of an instance, they are initialized with 0.

– KECCAK RATE U32s xored rate u32s columns: hold the original
rate XORed with block bytes.

– KECCAK CAPACITY U32S original capacity u32s columns: hold
the capacity part of the state before applying the Keccak permuta-
tion.

• Output columns:

– KECCAK DIGEST BYTES updated digest state bytes columns: the
beginning of the output state after applying the Keccak permuta-
tion. At the last row of an instance, they hold the computed hash.
They are decomposed in bytes for endianness reasons.

– KECCAK WIDTH MINUS DIGEST U32S partial updated state u32s columns:
the rest of the output state. They are discarded for the final digest,
but are used between instance rows.

• Helper columns:

20

D
RA
FT

– is full input block: indicates if the current row has a full input
block, i.e. block bytes contains only bytes read from memory and
no padding bytes.

– KECCAK RATE BYTES is final input len columns: in the final row
of an instance, indicate where the final read byte is. If the i-th
column is set to 1, it means that all bytes after the i-th are padding
bytes. In a full input block, all columns are set to 0.

For each instance, constraints ensure that:

• at each row:

– is full input block and is final input len columns are all bi-
nary.

– Only one column in is full input block and is final input len

is set to 1.

– xored rate u32s is original rate u32s XOR block bytes.

– The CTL with Keccak ensures that (updated digest state bytes

columns, partial updated state u32s) is the Keccak permuta-
tion output of (xored rate u32s, original capacity u32s).

• at the first row:

– original rate u32s is all 0.

– already absorbed bytes is 0.

• at each full input row (i.e. is full input block is 1, all is final input len

columns are 0):

– context, segment, virt and timestamp are unchanged in the next
row.

– Next already absorbed bytes is current already absorbed bytes

+ KECCAK RATE BYTES.

– Next (original rate u32s, original capacity u32s) is current
(updated digest state bytes columns, partial updated state u32s).

– The CTL with Memory ensures that block bytes is filled with
contiguous memory elements [a + already absorbed bytes, a +
already absorbed bytes + KECCAK RATE BYTES - 1]

21

D
RA
FT

• at the final row (i.e. is full input block is 0, is final input len’s
i-th column is 1 for a certain i, the rest are 0):

– The CTL with Memory ensures that block bytes is filled with
contiguous memory elements [a + already absorbed bytes, a +
already absorbed bytes + i - 1]. The rest are padding bytes.

– The CTL with CPU ensures that context, segment, virt and
timestamp match the KECCAK GENERAL call.

– The CTL with CPU ensures that l = already absorbed bytes +
i.

– The CTL with CPU ensures that updated digest state bytes is
the output of the KECCAK GENERAL call.

The trace is padded to the next power of two with dummy rows, whose
is full input block and is final input len columns are all 0.

4 Merkle Patricia tries

4.1 Internal memory format

Withour our zkEVM’s kernel memory,

1. An empty node is encoded as (MPT NODE EMPTY).

2. A branch node is encoded as (MPT NODE BRANCH, c1, . . . , c16, v), where
each ci is a pointer to a child node, and v is a pointer to a value. If
a branch node has no associated value, then v = 0, i.e. the null pointer.

3. An extension node is encoded as (MPT NODE EXTENSION, k, c), k repre-
sents the part of the key associated with this extension, and is encoded
as a 2-tuple (packed nibbles, num nibbles). c is a pointer to a child
node.

4. A leaf node is encoded as (MPT NODE LEAF, k, v), where k is a 2-tuple as
above, and v is a pointer to a value.

5. A digest node is encoded as (MPT NODE HASH, d), where d is a Keccak256
digest.

22

D
RA
FT

4.2 Prover input format

The initial state of each trie is given by the prover as a nondeterministic input
tape. This tape has a slightly different format:

1. An empty node is encoded as (MPT NODE EMPTY).

2. A branch node is encoded as (MPT NODE BRANCH, v?, c1, . . . , c16). Here v?
consists of a flag indicating whether a value is present,followed by the In the current

implementa-
tion, we use a
length prefix
rather than a
is-present pre-
fix, but we plan
to change that.

In the current
implementa-
tion, we use a
length prefix
rather than a
is-present pre-
fix, but we plan
to change that.

actual value payload if one is present. Each ci is the encoding of a child
node.

3. An extension node is encoded as (MPT NODE EXTENSION, k, c), k repre-
sents the part of the key associated with this extension, and is encoded
as a 2-tuple (packed nibbles, num nibbles). c is a pointer to a child
node.

4. A leaf node is encoded as (MPT NODE LEAF, k, v), where k is a 2-tuple as
above, and v is a value payload.

5. A digest node is encoded as (MPT NODE HASH, d), where d is a Keccak256
digest.

Nodes are thus given in depth-first order, enabling natural recursive methods
for encoding and decoding this format.

5 CPU logic

The CPU is in charge of coordinating the different STARKs, proving the cor-
rect execution of the instructions it reads and guaranteeing that the final state
of the EVM corresponds to the starting state after executing the input trans-
action. All design choices were made to make sure these properties can be
adequately translated into constraints of degree at most 3 while minimizing
the size of the different table traces (number of columns and number of rows).

In this section, we will detail some of these choices.

5.1 Kernel

The kernel is in charge of the proving logic. This section aims at providing
a high level overview of this logic. For details about any specific part of the
logic, one can consult the various “asm” files in the “kernel” folder.

23

https://github.com/0xPolygonZero/plonky2/tree/main/evm/src/cpu/kernel

D
RA
FT

We prove one transaction at a time. These proofs can later be aggregated
recursively to prove a block. Proof aggregation is however not in the scope of
this section. Here, we assume that we have an initial state of the EVM, and
we wish to prove that a single transaction was correctly executed, leading to
a correct update of the state.

Since we process one transaction at a time, a few intermediary values need
to be provided by the prover. Indeed, to prove that the registers in the EVM
state are correctly updated, we need to have access to their initial values.
When aggregating proofs, we can also constrain those values to match from
one transaction to the next. Let us consider the example of the transaction
number. Let n be the number of transactions executed so far in the current
block. If the current proof is not a dummy one (we are indeed executing a
transaction), then the transaction number should be updated: n := n + 1.
Otherwise, the number remains unchanged. We can easily constrain this up-
date. When aggregating the previous transaction proof (lhs) with the current
one (rhs), we also need to check that the output transaction number of lhs is
the same as the input transaction number of rhs.

Those prover provided values are stored in memory prior to entering the
kernel, and are used in the kernel to assert correct updates. The list of prover
provided values necessary to the kernel is the following:

1. the previous transaction number: tn,

2. the gas used before executing the current transaction: g u0,

3. the gas used after executing the current transaction: g u1,

4. the block bloom filter before executing the current transaction: b f0

5. the block bloom filter after executing the current transaction: b f1,

6. the state, transaction and receipts MPTs before executing the current
transaction: tries0,

7. the hash of all MPTs before executing the current transaction: digests0,

8. the hash of all MPTs after executing the current transaction: digests1,

9. the RLP encoding of the transaction.

24

D
RA
FT

Initialization: The first step consists in initializing:

• The shift table: it maps the number of bit shifts s with its shifted value
1 << s. Note that 0 ≤ s ≤ 255.

• The block bloom filter: the current block bloom filter is initialized with
b f0.

• The initial MPTs: the initial state, transaction and receipt tries tries0
are loaded from memory and hashed. The hashes are then compared to
digests 0.

• We load the transaction number t n and the current gas used g u0 from
memory.

If no transaction is provided, we can halt after this initialization. Other-
wise, we start processing the transaction. The transaction is provided as its
RLP encoding. We can deduce the various transaction fields (such as its type
or the transfer value) from its encoding. Based on this, the kernel updates
the state trie by executing the transaction. Processing the transaction also
includes updating the transactions MPT with the transaction at hand.

The processing of the transaction returns a boolean “success” that indicates
whether the transaction was executed successfully, along with the leftover gas.

The following step is then to update the receipts MPT. Here, we update
the transaction’s bloom filter and the block bloom filter. We store “success”,
the leftover gas, the transaction bloom filter and the logs in memory. We also
store some additional information that facilitates the RLP encoding of the
receipts later.

If there are any withdrawals, they are performed at this stage.
Finally, once the three MPTs have been updated, we need to carry out

final checks:

• the gas used after the execution is equal to g u1,

• the new transaction number is n+ 1 if there was a transaction,

• the updated block bloom filter is equal to b f1,

• the three MPTs are hashed and checked against digests1.

Once those final checks are performed, the program halts.

25

D
RA
FT

MPT hashing: MPTs are a complex structure in the kernel, and we will
not delve into all of its aspects. Here, we only explain how the hashing works,
since it is part of the initialization and final checks. The data required for the
MPTs are stored in the “TrieData” segment in memory. Whenever we need
to hash an MPT, we recover the information from the “TrieData” segment
and write it in the correct format in the “RlpRaw” segment. We start by
getting the node type. If the node is a hash node, we simply return its value.
Otherwise, we RLP encode the node recursively:

• If it is an empty node, the encoding is 0x80.

• If it is a branch node, we encode the node’s value and append it to
the RLP tape. Then, we encode each of the children and append the
encodings to the RLP tape.

• If it is an extension node, we RLP encode its child and hex prefix it.

• If it is a leaf, we RLP encode it depending on the type of trie, and
hex prefix the encoding. Note that for a receipt leaf, the encoding is
RLP(type||RLP(receipt)). In the case of a transaction, their RLP
encoding is already provided by the input, so we simply load it from
memory.

Finally, we hash the output of the RLP encoding, stored in “RlpRaw” – unless
it is already a hash.

5.2 Simple opcodes VS Syscalls

For simplicity and efficiency, EVM opcodes are categorized into two groups:
“simple opcodes” and “syscalls”. Simple opcodes are generated directly in
Rust, in operation.rs. Every call to a simple opcode adds exactly one row
to the cpu table. Syscalls are more complex structures written with simple
opcodes, in the kernel.

Whenever we encounter a syscall, we switch to kernel mode and execute
its associated code. At the end of each syscall, we run EXIT KERNEL, which
resets the kernel mode to its state right before the syscall. It also sets the PC
to point to the opcode right after the syscall.

Exceptions are handled differently for simple opcodes and syscalls. When
necessary, simple opcodes throw an exception (see 5.6). This activates the
“exception flag” in the CPU and runs the exception operations. On the other
hand, syscalls handle exceptions in the kernel directly.

26

https://github.com/0xPolygonZero/plonky2/blob/main/evm/src/witness/operation.rs
https://github.com/0xPolygonZero/plonky2/blob/main/evm/spec/tables/cpu.tex

D
RA
FT

5.3 Privileged instructions

To ease and speed-up proving time, the zkEVM supports custom, privileged
instructions that can only be executed by the kernel. Any appearance of those
privileged instructions in a contract bytecode for instance would result in an
unprovable state.

In what follows, we denote by pBN the characteristic of the BN254 curve
base field, curve for which Ethereum supports the ecAdd, ecMul and ecPairing
precompiles.

0x0C. ADDFP254. Pops 2 elements from the stack interpreted as BN254 base
field elements, and pushes their addition modulo pBN onto the stack.

0x0D. MULFP254. Pops 2 elements from the stack interpreted as BN254 base
field elements, and pushes their product modulo pBN onto the stack.

0x0E. SUBFP254. Pops 2 elements from the stack interpreted as BN254 base
field elements, and pushes their difference modulo pBN onto the stack.
This instruction behaves similarly to the SUB (0x03) opcode, in that we
subtract the second element of the stack from the initial (top) one.

0x0F. SUBMOD. Pops 3 elements from the stack, and pushes the modular differ-
ence of the first two elements of the stack by the third one. It is similar
to the SUB instruction, with an extra pop for the custom modulus.

0x21. KECCAK GENERAL. Pops 4 elements (successively the context, segment,
and offset portions of a Memory address, followed by a length `) and
pushes the hash of the memory portion starting at the constructed ad-
dress and of length `. It is similar to KECCAK256 (0x20) instruction,
but can be applied to any memory section (i.e. even privileged ones).

0x49. PROVER INPUT. Pushes a single prover input onto the stack.

0xC0-0xDF. MSTORE 32BYTES. Pops 4 elements from the stack (successively
the context, segment, and offset portions of a Memory address, and
then a value), and pushes a new offset’ onto the stack. The value is
being decomposed into bytes and written to memory, starting from the
reconstructed address. The new offset being pushed is computed as the
initial address offset + the length of the byte sequence being written to
memory. Note that similarly to PUSH (0x60-0x7F) instructions there are
31 MSTORE 32BYTES instructions, each corresponding to a target byte
length (length 0 is ignored, for the same reasons as MLOAD 32BYTES,

27

D
RA
FT

see below). Writing to memory an integer fitting in n bytes with a
length ` < n will result in the integer being truncated. On the other
hand, specifying a length ` greater than the byte size of the value being
written will result in padding with zeroes. This process is heavily used
when resetting memory sections (by calling MSTORE 32BYTES 32 with
the value 0).

0xF6. GET CONTEXT. Pushes the current context onto the stack. The kernel
always has context 0.

0xF7. SET CONTEXT. Pops the top element of the stack and updates the current
context to this value. It is usually used when calling another contract or
precompile, to distinguish the caller from the callee.

0xF8. MLOAD 32BYTES. Pops 4 elements from the stack (successively the con-
text, segment, and offset portions of a Memory address, and then a length
`), and pushes a value onto the stack. The pushed value corresponds to
the U256 integer read from the big-endian sequence of length ` from the
memory address being reconstructed. Note that an empty length is not
valid, nor is a length greater than 32 (as a U256 consists in at most 32
bytes). Missing these conditions will result in an unverifiable proof.

0xF9. EXIT KERNEL. Pops 1 element from the stack. This instruction is used
at the end of a syscall, before proceeding to the rest of the execution
logic. The popped element, kexit info, contains several informations like
the current program counter, current gas used, and if we are in kernel
(i.e. privileged) mode.

0xFB. MLOAD GENERAL. Pops 3 elements (successively the context, segment,
and offset portions of a Memory address), and pushes the value stored
at this memory address onto the stack. It can read any memory location,
general (similarly to MLOAD (0x51) instruction) or privileged.

0xFC. MSTORE GENERAL. Pops 4 elements (successively a value, then the con-
text, segment, and offset portions of a Memory address), and writes
the popped value from the stack at the reconstructed address. It can
write to any memory location, general (similarly to MSTORE (0x52) /
MSTORE8 (0x53) instructions) or privileged.

5.4 Stack handling

TODO

28

D
RA
FT

5.5 Gas handling

TODO

5.6 Exceptions

Sometimes, when executing user code (i.e. contract or transaction code), the
EVM halts exceptionally (i.e. outside of a STOP, a RETURN or a REVERT).
When this happens, the CPU table invokes a special instruction with a ded-
icated operation flag exception. Exceptions can only happen in user mode;
triggering an exception in kernel mode would make the proof unverifiable. No
matter the exception, the handling is the same:

– The opcode which would trigger the exception is not executed. The
operation flag set is exception instead of the opcode’s flag.

– We push a value to the stack which contains: the current program counter
(to retrieve the faulty opcode), and the current value of gas used. The pro-
gram counter is then set to the corresponding exception handler in the kernel
(e.g. exc out of gas).

– The exception handler verifies that the given exception would indeed be
triggered by the faulty opcode. If this is not the case (if the exception has
already happened or if it doesn’t happen after executing the faulty opcode),
then the kernel panics: there was an issue during witness generation.

– The kernel consumes the remaining gas and returns from the current
context with success set to 0 to indicate an execution failure.

Here is the list of the possible exceptions:

Out of gas: Raised when a native instruction (i.e. not a syscall) in user mode
pushes the amount of gas used over the current gas limit. When this
happens, the EVM jumps to exc out of gas. The kernel then checks
that the consumed gas is currently below the gas limit, and that adding
the gas cost of the faulty instruction pushes it over it. If the exception
is not raised, the prover will panic when returning from the execution:
the remaining gas is checked to be positive after STOP, RETURN or
REVERT.

Invalid opcode: Raised when the read opcode is invalid. It means either that
it doesn’t exist, or that it’s a privileged instruction and thus not available
in user mode. When this happens, the EVM jumps to exc invalid opcode.
The kernel then checks that the given opcode is indeed invalid. If the
exception is not raised, decoding constraints ensure no operation flag is

29

D
RA
FT

set to 1, which would make it a padding row. Halting constraints would
then make the proof unverifiable.

Stack underflow: Raised when an instruction which pops from the stack is
called when the stack doesn’t have enough elements. When this happens,
the EVM jumps to exc stack overflow. The kernel then checks that
the current stack length is smaller than the minimum stack length re-
quired by the faulty opcode. If the exception is not raised, the popping
memory operation’s address offset would underflow, and the Memory
range check would require the Memory trace to be too large to be prov-
able (> 260).

Invalid JUMP destination: Raised when the program counter jumps to an
invalid location (i.e. not a JUMPDEST). When this happens, the EVM
jumps to exc invalid jump destination. The kernel then checks that
the opcode is a JUMP, and that the destination is not a JUMPDEST
by checking the JUMPDEST segment. If the exception is not raised,
jumping constraints will fail the proof.

Invalid JUMPI destination: Same as the above, for JUMPI.

Stack overflow: Raised when a pushing instruction in user mode pushes the
stack over 1024. When this happens, the EVM jumps to exc stack overflow.
The kernel then checks that the current stack length is exactly equal to
1024 (since an instruction can only push once at most), and that the
faulty instruction is pushing. If the exception is not raised, stack con-
straints ensure that a stack length of 1025 in user mode will fail the
proof.

References

[1] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Scalable, transpar-
ent, and post-quantum secure computational integrity.” Cryptology ePrint
Archive, Report 2018/046, 2018. https://ia.cr/2018/046.

30

https://ia.cr/2018/046

	Introduction
	STARK framework
	Cost model
	Field selection
	Cross-table lookups
	Range-checks
	What to range-check?
	Lookup Argument
	Constraints

	Tables
	CPU
	Arithmetic
	Auxiliary columns

	Byte Packing
	Logic
	Memory
	Virtual memory
	Timestamps

	Keccak-f
	Keccak-f Permutation
	Columns
	Constraints

	KeccakSponge

	Merkle Patricia tries
	Internal memory format
	Prover input format

	CPU logic
	Kernel
	Simple opcodes VS Syscalls
	Privileged instructions
	Stack handling
	Gas handling
	Exceptions

