use crate::field::fft::fft; use crate::field::field::Field; use crate::field::lagrange::{interpolant, interpolate}; use crate::fri::{fri_proof, FriConfig}; use crate::merkle_tree::MerkleTree; use crate::plonk_challenger::Challenger; use crate::plonk_common::reduce_with_powers; use crate::polynomial::old_polynomial::Polynomial; use crate::polynomial::polynomial::{PolynomialCoeffs, PolynomialValues}; use crate::util::transpose; struct ListPolynomialCommitment { pub polynomials: Vec>, pub fri_config: FriConfig, pub merkle_tree: MerkleTree, pub degree: usize, pub blinding: bool, } impl ListPolynomialCommitment { pub fn new( polynomials: Vec>, fri_config: &FriConfig, blinding: bool, ) -> Self { let degree = polynomials[0].len(); let mut lde_values = polynomials .iter() .map(|p| { assert_eq!(p.len(), degree, "Polynomial degree invalid."); p.clone() .lde(fri_config.rate_bits) .coset_fft(F::MULTIPLICATIVE_GROUP_GENERATOR) .values }) .chain(blinding.then(|| { (0..(degree << fri_config.rate_bits)) .map(|_| F::rand()) .collect() })) .collect::>(); let merkle_tree = MerkleTree::new(transpose(&lde_values), false); Self { polynomials, fri_config: fri_config.clone(), merkle_tree, degree, blinding, } } pub fn open(&self, points: &[F], challenger: &mut Challenger) -> OpeningProof { for p in points { assert_ne!( p.exp_usize(self.degree), F::ONE, "Opening point is in the subgroup." ); } let evaluations = points .iter() .map(|&x| { self.polynomials .iter() .map(|p| p.eval(x)) .collect::>() }) .collect::>(); for evals in &evaluations { challenger.observe_elements(evals); } let alpha = challenger.get_challenge(); let scaled_poly = self .polynomials .iter() .rev() .map(|p| p.clone().into()) .fold(Polynomial::empty(), |acc, p| acc.scalar_mul(alpha).add(&p)); let scaled_evals = evaluations .iter() .map(|e| reduce_with_powers(e, alpha)) .collect::>(); let pairs = points .iter() .zip(&scaled_evals) .map(|(&x, &e)| (x, e)) .collect::>(); debug_assert!(pairs.iter().all(|&(x, e)| scaled_poly.eval(x) == e)); let interpolant: Polynomial = interpolant(&pairs).into(); let denominator = points.iter().fold(Polynomial::empty(), |acc, &x| { acc.mul(&vec![-x, F::ONE].into()) }); let numerator = scaled_poly.add(&interpolant.neg()); let (mut quotient, rem) = numerator.polynomial_division(&denominator); debug_assert!(rem.is_zero()); quotient.pad(quotient.degree().next_power_of_two()); let quotient_values = fft(quotient.clone().into()); let fri_proof = fri_proof( "ient.into(), "ient_values, challenger, &self.fri_config, ); todo!() } } pub struct OpeningProof { evaluations: Vec>, }