//! Concrete instantiation of a hash function. use std::convert::TryInto; use num::traits::real::Real; use rayon::prelude::*; use crate::field::field::Field; use crate::gmimc::{gmimc_compress, gmimc_permute_array}; use crate::proof::Hash; use crate::util::{reverse_index_bits, transpose}; const RATE: usize = 8; const CAPACITY: usize = 4; const WIDTH: usize = RATE + CAPACITY; const GMIMC_ROUNDS: usize = 101; const GMIMC_CONSTANTS: [u64; GMIMC_ROUNDS] = [11875528958976719239, 6107683892976199900, 7756999550758271958, 14819109722912164804, 9716579428412441110, 13627117528901194436, 16260683900833506663, 5942251937084147420, 3340009544523273897, 5103423085715007461, 17051583366444092101, 11122892258227244197, 16564300648907092407, 978667924592675864, 17676416205210517593, 1938246372790494499, 8857737698008340728, 1616088456497468086, 15961521580811621978, 17427220057097673602, 14693961562064090188, 694121596646283736, 554241305747273747, 5783347729647881086, 14933083198980931734, 2600898787591841337, 9178797321043036456, 18068112389665928586, 14493389459750307626, 1650694762687203587, 12538946551586403559, 10144328970401184255, 4215161528137084719, 17559540991336287827, 1632269449854444901, 986434918028205468, 14921385763379308253, 4345141219277982730, 2645897826751167170, 9815223670029373528, 7687983869685434132, 13956100321958014639, 519639453142393369, 15617837024229225911, 1557446238053329052, 8130006133842942201, 864716631341688017, 2860289738131495304, 16723700803638270299, 8363528906277648001, 13196016034228493087, 2514677332206134618, 15626342185220554936, 466271571343554681, 17490024028988898434, 6454235936129380878, 15187752952940298536, 18043495619660620405, 17118101079533798167, 13420382916440963101, 535472393366793763, 1071152303676936161, 6351382326603870931, 12029593435043638097, 9983185196487342247, 414304527840226604, 1578977347398530191, 13594880016528059526, 13219707576179925776, 6596253305527634647, 17708788597914990288, 7005038999589109658, 10171979740390484633, 1791376803510914239, 2405996319967739434, 12383033218117026776, 17648019043455213923, 6600216741450137683, 5359884112225925883, 1501497388400572107, 11860887439428904719, 64080876483307031, 11909038931518362287, 14166132102057826906, 14172584203466994499, 593515702472765471, 3423583343794830614, 10041710997716717966, 13434212189787960052, 9943803922749087030, 3216887087479209126, 17385898166602921353, 617799950397934255, 9245115057096506938, 13290383521064450731, 10193883853810413351, 14648839921475785656, 14635698366607946133, 9134302981480720532, 10045888297267997632, 10752096344939765738]; /// Hash the vector if necessary to reduce its length to ~256 bits. If it already fits, this is a /// no-op. pub fn hash_or_noop(mut inputs: Vec) -> Hash { if inputs.len() <= 4 { Hash::from_partial(inputs) } else { hash_n_to_hash(inputs, false) } } /// A one-way compression function which takes two ~256 bit inputs and returns a ~256 bit output. pub fn compress(x: Hash, y: Hash) -> Hash { let mut inputs = Vec::with_capacity(8); inputs.extend(&x.elements); inputs.extend(&y.elements); hash_n_to_hash(inputs, false) } /// If `pad` is enabled, the message is padded using the pad10*1 rule. In general this is required /// for the hash to be secure, but it can safely be disabled in certain cases, like if the input /// length is fixed. pub fn hash_n_to_m(mut inputs: Vec, num_outputs: usize, pad: bool) -> Vec { if pad { inputs.push(F::ZERO); while (inputs.len() + 1) % WIDTH != 0 { inputs.push(F::ONE); } inputs.push(F::ZERO); } let mut state = [F::ZERO; WIDTH]; // Absorb all input chunks. for input_chunk in inputs.chunks(WIDTH - 1) { for i in 0..input_chunk.len() { state[i] = state[i] + input_chunk[i]; } state = gmimc_permute_array(state, GMIMC_CONSTANTS); } // Squeeze until we have the desired number of outputs. let mut outputs = Vec::new(); loop { for i in 0..(WIDTH - 1) { outputs.push(state[i]); if outputs.len() == num_outputs { return outputs; } } state = gmimc_permute_array(state, GMIMC_CONSTANTS); } } pub fn hash_n_to_hash(inputs: Vec, pad: bool) -> Hash { let elements = hash_n_to_m(inputs, 4, pad).try_into().unwrap(); Hash { elements } } pub fn hash_n_to_1(inputs: Vec, pad: bool) -> F { hash_n_to_m(inputs, 1, pad)[0] } /// Like `merkle_root`, but first reorders each vector so that `new[i] = old[i.reverse_bits()]`. pub(crate) fn merkle_root_bit_rev_order(vecs: Vec>) -> Hash { let vecs_reordered = vecs.into_par_iter() .map(reverse_index_bits) .collect(); merkle_root(vecs_reordered) } /// Given `n` vectors, each of length `l`, constructs a Merkle tree with `l` leaves, where each leaf /// is a hash obtained by hashing a "leaf set" consisting of `n` elements. If `n <= 4`, this hashing /// is skipped, as there is no need to compress leaf data. pub(crate) fn merkle_root(vecs: Vec>) -> Hash { // TODO: Parallelize. let mut vecs_t = transpose(&vecs); let mut hashes = vecs_t.into_iter() .map(|leaf_set| hash_or_noop(leaf_set)) .collect::>(); while hashes.len() > 1 { hashes = hashes.chunks(2) .map(|pair| compress(pair[0], pair[1])) .collect(); } hashes[0] }