//! Support for the EVM MUL instruction. //! //! This crate verifies an EVM MUL instruction, which takes two //! 256-bit inputs A and B, and produces a 256-bit output C satisfying //! //! C = A*B (mod 2^256). //! //! Inputs A and B, and output C, are given as arrays of 16-bit //! limbs. For example, if the limbs of A are a[0]...a[15], then //! //! A = \sum_{i=0}^15 a[i] β^i, //! //! where β = 2^16. To verify that A, B and C satisfy the equation we //! proceed as follows. Define a(x) = \sum_{i=0}^15 a[i] x^i (so A = a(β)) //! and similarly for b(x) and c(x). Then A*B = C (mod 2^256) if and only //! if there exist polynomials q and m such that //! //! a(x)*b(x) - c(x) - m(x)*x^16 - (x - β)*q(x) == 0. //! //! Because A, B and C are 256-bit numbers, the degrees of a, b and c //! are (at most) 15. Thus deg(a*b) <= 30, so deg(m) <= 14 and deg(q) //! <= 29. However, the fact that we're verifying the equality modulo //! 2^256 means that we can ignore terms of degree >= 16, since for //! them evaluating at β gives a factor of β^16 = 2^256 which is 0. //! //! Hence, to verify the equality, we don't need m(x) at all, and we //! only need to know q(x) up to degree 14 (so that (x-β)*q(x) has //! degree 15). On the other hand, the coefficients of q(x) can be as //! large as 16*(β-2) or 20 bits. use plonky2::field::extension::Extendable; use plonky2::field::packed::PackedField; use plonky2::field::types::Field; use plonky2::hash::hash_types::RichField; use plonky2::iop::ext_target::ExtensionTarget; use crate::arithmetic::columns::*; use crate::constraint_consumer::{ConstraintConsumer, RecursiveConstraintConsumer}; use crate::range_check_error; pub fn generate(lv: &mut [F; NUM_ARITH_COLUMNS]) { let input0_limbs = MUL_INPUT_0.map(|c| lv[c].to_canonical_u64()); let input1_limbs = MUL_INPUT_1.map(|c| lv[c].to_canonical_u64()); const MASK: u64 = (1u64 << LIMB_BITS) - 1u64; // Input and output have 16-bit limbs let mut aux_in_limbs = [0u64; N_LIMBS]; let mut output_limbs = [0u64; N_LIMBS]; let mut unreduced_prod = [0u64; N_LIMBS]; // Column-wise pen-and-paper long multiplication on 16-bit limbs. // We have heaps of space at the top of each limb, so by // calculating column-wise (instead of the usual row-wise) we // avoid a bunch of carry propagation handling (at the expense of // slightly worse cache coherency), and it makes it easy to // calculate the coefficients of a(x)*b(x) (in unreduced_prod). let mut cy = 0u64; for col in 0..N_LIMBS { for i in 0..=col { // Invariant: i + j = col let j = col - i; let ai_x_bj = input0_limbs[i] * input1_limbs[j]; unreduced_prod[col] += ai_x_bj; } let t = unreduced_prod[col] + cy; cy = t >> LIMB_BITS; output_limbs[col] = t & MASK; } // In principle, the last cy could be dropped because this is // multiplication modulo 2^256. However, we need it below for // aux_in_limbs to handle the fact that unreduced_prod will // inevitably contain a one digit's worth that is > 2^256. for (&c, output_limb) in MUL_OUTPUT.iter().zip(output_limbs) { lv[c] = F::from_canonical_u64(output_limb); } for deg in 0..N_LIMBS { // deg'th element <- a*b - c unreduced_prod[deg] -= output_limbs[deg]; } // unreduced_prod is the coefficients of the polynomial a(x)*b(x) - c(x). // This must be zero when evaluated at x = B = 2^LIMB_BITS, hence it's // divisible by (B - x). If we write unreduced_prod as // // a(x)*b(x) - c(x) = \sum_{i=0}^n p_i x^i // = (B - x) \sum_{i=0}^{n-1} q_i x^i // // then by comparing coefficients it is easy to see that // // q_0 = p_0 / B and q_i = (p_i + q_{i-1}) / B // // for 0 < i < n-1 (and the divisions are exact). aux_in_limbs[0] = unreduced_prod[0] >> LIMB_BITS; for deg in 1..N_LIMBS - 1 { aux_in_limbs[deg] = (unreduced_prod[deg] + aux_in_limbs[deg - 1]) >> LIMB_BITS; } aux_in_limbs[N_LIMBS - 1] = cy; for deg in 0..N_LIMBS { let c = MUL_AUX_INPUT[deg]; lv[c] = F::from_canonical_u64(aux_in_limbs[deg]); } } pub fn eval_packed_generic( lv: &[P; NUM_ARITH_COLUMNS], yield_constr: &mut ConstraintConsumer

, ) { range_check_error!(MUL_INPUT_0, 16); range_check_error!(MUL_INPUT_1, 16); range_check_error!(MUL_OUTPUT, 16); range_check_error!(MUL_AUX_INPUT, 20); let is_mul = lv[IS_MUL]; let input0_limbs = MUL_INPUT_0.map(|c| lv[c]); let input1_limbs = MUL_INPUT_1.map(|c| lv[c]); let output_limbs = MUL_OUTPUT.map(|c| lv[c]); let aux_limbs = MUL_AUX_INPUT.map(|c| lv[c]); // Constraint poly holds the coefficients of the polynomial that // must be identically zero for this multiplication to be // verified. It is initialised to the /negative/ of the claimed // output. let mut constr_poly = [P::ZEROS; N_LIMBS]; assert_eq!(constr_poly.len(), N_LIMBS); // After this loop constr_poly holds the coefficients of the // polynomial A(x)B(x) - C(x), where A, B and C are the polynomials // // A(x) = \sum_i input0_limbs[i] * 2^LIMB_BITS // B(x) = \sum_i input1_limbs[i] * 2^LIMB_BITS // C(x) = \sum_i output_limbs[i] * 2^LIMB_BITS // // This polynomial should equal (2^LIMB_BITS - x) * Q(x) where Q is // // Q(x) = \sum_i aux_limbs[i] * 2^LIMB_BITS // for col in 0..N_LIMBS { // Invariant: i + j = col for i in 0..=col { let j = col - i; constr_poly[col] += input0_limbs[i] * input1_limbs[j]; } constr_poly[col] -= output_limbs[col]; } // This subtracts (2^LIMB_BITS - x) * Q(x) from constr_poly. let base = P::Scalar::from_canonical_u64(1 << LIMB_BITS); constr_poly[0] -= base * aux_limbs[0]; for deg in 1..N_LIMBS { constr_poly[deg] -= (base * aux_limbs[deg]) - aux_limbs[deg - 1]; } // At this point constr_poly holds the coefficients of the // polynomial A(x)B(x) - C(x) - (x - 2^LIMB_BITS)*Q(x). The // multiplication is valid if and only if all of those // coefficients are zero. for &c in &constr_poly { yield_constr.constraint(is_mul * c); } } pub fn eval_ext_circuit, const D: usize>( builder: &mut plonky2::plonk::circuit_builder::CircuitBuilder, lv: &[ExtensionTarget; NUM_ARITH_COLUMNS], yield_constr: &mut RecursiveConstraintConsumer, ) { let is_mul = lv[IS_MUL]; let input0_limbs = MUL_INPUT_0.map(|c| lv[c]); let input1_limbs = MUL_INPUT_1.map(|c| lv[c]); let output_limbs = MUL_OUTPUT.map(|c| lv[c]); let aux_in_limbs = MUL_AUX_INPUT.map(|c| lv[c]); let zero = builder.zero_extension(); let mut constr_poly = [zero; N_LIMBS]; // pointless init // Invariant: i + j = deg for col in 0..N_LIMBS { let mut acc = zero; for i in 0..=col { let j = col - i; acc = builder.mul_add_extension(input0_limbs[i], input1_limbs[j], acc); } constr_poly[col] = builder.sub_extension(acc, output_limbs[col]); } let base = F::from_canonical_u64(1 << LIMB_BITS); let t = builder.mul_const_extension(base, aux_in_limbs[0]); constr_poly[0] = builder.sub_extension(constr_poly[0], t); for deg in 1..N_LIMBS { let t0 = builder.mul_const_extension(base, aux_in_limbs[deg]); let t1 = builder.sub_extension(t0, aux_in_limbs[deg - 1]); constr_poly[deg] = builder.sub_extension(constr_poly[deg], t1); } for &c in &constr_poly { let filter = builder.mul_extension(is_mul, c); yield_constr.constraint(builder, filter); } } #[cfg(test)] mod tests { use plonky2::field::goldilocks_field::GoldilocksField; use plonky2::field::types::Field; use rand::{Rng, SeedableRng}; use rand_chacha::ChaCha8Rng; use super::*; use crate::arithmetic::columns::NUM_ARITH_COLUMNS; use crate::constraint_consumer::ConstraintConsumer; // TODO: Should be able to refactor this test to apply to all operations. #[test] fn generate_eval_consistency_not_mul() { type F = GoldilocksField; let mut rng = ChaCha8Rng::seed_from_u64(0x6feb51b7ec230f25); let mut lv = [F::default(); NUM_ARITH_COLUMNS].map(|_| F::rand_from_rng(&mut rng)); // if `IS_MUL == 0`, then the constraints should be met even // if all values are garbage. lv[IS_MUL] = F::ZERO; let mut constrant_consumer = ConstraintConsumer::new( vec![GoldilocksField(2), GoldilocksField(3), GoldilocksField(5)], GoldilocksField::ONE, GoldilocksField::ONE, GoldilocksField::ONE, ); eval_packed_generic(&lv, &mut constrant_consumer); for &acc in &constrant_consumer.constraint_accs { assert_eq!(acc, GoldilocksField::ZERO); } } #[test] fn generate_eval_consistency_mul() { type F = GoldilocksField; let mut rng = ChaCha8Rng::seed_from_u64(0x6feb51b7ec230f25); let mut lv = [F::default(); NUM_ARITH_COLUMNS].map(|_| F::rand_from_rng(&mut rng)); // set `IS_MUL == 1` and ensure all constraints are satisfied. lv[IS_MUL] = F::ONE; // set inputs to random values for (&ai, bi) in MUL_INPUT_0.iter().zip(MUL_INPUT_1) { lv[ai] = F::from_canonical_u16(rng.gen()); lv[bi] = F::from_canonical_u16(rng.gen()); } generate(&mut lv); let mut constrant_consumer = ConstraintConsumer::new( vec![GoldilocksField(2), GoldilocksField(3), GoldilocksField(5)], GoldilocksField::ONE, GoldilocksField::ONE, GoldilocksField::ONE, ); eval_packed_generic(&lv, &mut constrant_consumer); for &acc in &constrant_consumer.constraint_accs { assert_eq!(acc, GoldilocksField::ZERO); } } }