The Polygon Zero zkEVM

DRAFT
September 19, 2022

Abstract
We describe the design of Polygon Zero’s zkEVM, ...

Contents

1

2

Introduction

STARK framework

2.1 Costmodel
2.2 Field selection L
2.3 Cross-table lookups
Tables
3.1 CPU . . .
3.2 Arithmetic
3.3 Logic
3.4 Memory
3.4.1 Virtual memory
3.4.2 Timestamps
3.5 Keccak-f
3.6 Keccak sponge o

Merkle Patricia tries

Privileged instructions

w

=~ W W W

O OO U R R R

1 Introduction

TODO

2 STARK framework

2.1 Cost model

Our zkEVM is designed for efficient verification by STARKSs [1], particularly
by an AIR with degree 3 constraints. In this model, the prover bottleneck is
typically constructing Merkle trees, particularly constructing the tree contain-
ing low-degree extensions of witness polynomials.

More specifically, we target a constraint system of degree 3.

2.2 Field selection

Our zkEVM is designed to have its execution traces encoded in a particular
prime field F,, with p = 2%* — 232 4+ 1. A nice property of this field is that
it can represent the results of many common u32 operations. For example,
(widening) u32 multiplication has a maximum value of (232 —1)?, which is less
than p. In fact a u32 multiply-add has a maximum value of p—1, so the result
can be represented with a single field element, although if we were to add a
carry in bit, this no longer holds.
This field also enables a very efficient reduction method. Observe that

204 =22 1 (mod p)
and consequently

290 =2%2(2% — 1) (mod p)
=2 2% (mod p)
=—1 (mod p).

296

To reduce a 128-bit number n, we first rewrite n as ng + 2%4n; + 2%n,, where

ng is 64 bits and nq,ny are 32 bits each. Then
n=ng+2%n; +2%n, (mod p)
=no+ (22 = 1)n; —ny, (mod p)
After computing (232 — 1)ny, which can be done with a shift and subtraction,

we add the first two terms, subtracting p if overflow occurs. We then subtract
ng, adding p if underflow occurs.

At this point we have reduced n to a u64. This partial reduction is adequate
for most purposes, but if we needed the result in canonical form, we would
perform a final conditional subtraction.

2.3 Cross-table lookups
TODO

3 Tables

3.1 CPU
TODO

3.2 Arithmetic
TODO

3.3 Logic
TODO

3.4 Memory

For simplicity, let’s treat addresses and values as individual field elements.
The generalization to multi-element addresses and values is straightforward.

Each row of the memory table corresponds to a single memory operation
(a read or a write), and contains the following columns:

1. a, the target address

2. r, an “is read” flag, which should be 1 for a read or 0 for a write
3. v, the value being read or written

4. 7, the timestamp of the operation

The memory table should be ordered by (a,7). Note that the correctness
memory could be checked as follows:

1. Verify the ordering by checking that (a;, 7) < (a;+1,7i41) for each con-
secutive pair.

W

2. Enumerate the purportedly-ordered log while tracking a “current” value

¢, which is initially zero.!
(a) Upon observing an address which doesn’t match that of the previous
row, set c < 0.
(b) Upon observing a write, set ¢ < v.
(c) Upon observing a read, check that v = c.
The ordering check is slightly involved since we are comparing multiple

columns. To facilitate this, we add an additional column e, where the prover
can indicate whether two consecutive addresses are equal. An honest prover

will set
1 if a; = 41,
e; ‘ +1
0 otherwise.

We then impose the following transition constraints:
1. ef(e; —1) =0,
2. ej(a; —aiyq) =0,
3. ei(tip1 — i)+ (1 —e) (a1 —a; — 1) < 2%

The last constraint emulates a comparison between two addresses or times-
tamps by bounding their difference; this assumes that all addresses and times-
tamps fit in 32 bits and that the field is larger than that.

Finally, the iterative checks can be arithmetized by introducing a trace
column for the current value c. We add a boundary constraint ¢y = 0, and the
following transition constraints:

1. Vgoms = G,

2. Cip1 = €iVto,i-

3.4.1 Virtual memory

In the EVM, each contract call has its own address space. Within that address
space, there are separate segments for code, main memory, stack memory,
calldata, and returndata. Thus each address actually has three compoments:

1. an execution context, representing a contract call,

'EVM memory is zero-initialized.

2. a segment ID, used to separate code, main memory, and so forth, and so
on

3. a virtual address.

The comparisons now involve several columns, which requires some minor
adaptations to the technique described above; we will leave these as an exercise
to the reader.

3.4.2 Timestamps
TODO: Explain 7 = NUM_CHANNELS X cycle + channel.

3.5 Keccak-f
This table computes the Keccak-f[1600] permutation.

3.6 Keccak sponge

This table computes the Keccak256 hash, a sponge-based hash built on top of
the Keccak-f[1600] permutation.

4 Merkle Patricia tries

TODO

5 Privileged instructions
0xFB. MLOAD_GENERAL. Returns
OxFC. MSTORE_GENERAL. Returns

TODO. STACK_SIZE. Returns

References

[1] E. Ben-Sasson, 1. Bentov, Y. Horesh, and M. Riabzev, “Scalable, transpar-
ent, and post-quantum secure computational integrity.” Cryptology ePrint
Archive, Report 2018/046, 2018. https://ia.cr/2018/046.

https://ia.cr/2018/046

	Introduction
	STARK framework
	Cost model
	Field selection
	Cross-table lookups

	Tables
	CPU
	Arithmetic
	Logic
	Memory
	Virtual memory
	Timestamps

	Keccak-f
	Keccak sponge

	Merkle Patricia tries
	Privileged instructions

