use std::borrow::Borrow; use crate::field::extension_field::Extendable; use crate::field::field_types::PrimeField; use crate::gates::exponentiation::ExponentiationGate; use crate::iop::target::{BoolTarget, Target}; use crate::plonk::circuit_builder::CircuitBuilder; impl, const D: usize> CircuitBuilder { /// Computes `-x`. pub fn neg(&mut self, x: Target) -> Target { let neg_one = self.neg_one(); self.mul(x, neg_one) } /// Computes `x^2`. pub fn square(&mut self, x: Target) -> Target { self.mul(x, x) } /// Computes `x^3`. pub fn cube(&mut self, x: Target) -> Target { self.mul_many(&[x, x, x]) } /// Computes `const_0 * multiplicand_0 * multiplicand_1 + const_1 * addend`. pub fn arithmetic( &mut self, const_0: F, multiplicand_0: Target, multiplicand_1: Target, const_1: F, addend: Target, ) -> Target { let multiplicand_0_ext = self.convert_to_ext(multiplicand_0); let multiplicand_1_ext = self.convert_to_ext(multiplicand_1); let addend_ext = self.convert_to_ext(addend); self.arithmetic_extension( const_0, const_1, multiplicand_0_ext, multiplicand_1_ext, addend_ext, ) .0[0] } /// Computes `x * y + z`. pub fn mul_add(&mut self, x: Target, y: Target, z: Target) -> Target { self.arithmetic(F::ONE, x, y, F::ONE, z) } /// Computes `x * y - z`. pub fn mul_sub(&mut self, x: Target, y: Target, z: Target) -> Target { self.arithmetic(F::ONE, x, y, F::NEG_ONE, z) } /// Computes `x + y`. pub fn add(&mut self, x: Target, y: Target) -> Target { let one = self.one(); // x + y = 1 * x * 1 + 1 * y self.arithmetic(F::ONE, x, one, F::ONE, y) } /// Add `n` `Target`s. // TODO: Can be made `D` times more efficient by using all wires of an `ArithmeticExtensionGate`. pub fn add_many(&mut self, terms: &[Target]) -> Target { let terms_ext = terms .iter() .map(|&t| self.convert_to_ext(t)) .collect::>(); self.add_many_extension(&terms_ext).to_target_array()[0] } /// Computes `x - y`. pub fn sub(&mut self, x: Target, y: Target) -> Target { let one = self.one(); // x - y = 1 * x * 1 + (-1) * y self.arithmetic(F::ONE, x, one, F::NEG_ONE, y) } /// Computes `x * y`. pub fn mul(&mut self, x: Target, y: Target) -> Target { // x * y = 1 * x * y + 0 * x self.arithmetic(F::ONE, x, y, F::ZERO, x) } /// Multiply `n` `Target`s. pub fn mul_many(&mut self, terms: &[Target]) -> Target { let terms_ext = terms .iter() .map(|&t| self.convert_to_ext(t)) .collect::>(); self.mul_many_extension(&terms_ext).to_target_array()[0] } /// Exponentiate `base` to the power of `2^power_log`. pub fn exp_power_of_2(&mut self, base: Target, power_log: usize) -> Target { self.exp_u64(base, 1 << power_log) } // TODO: Test /// Exponentiate `base` to the power of `exponent`, given by its little-endian bits. pub fn exp_from_bits( &mut self, base: Target, exponent_bits: impl IntoIterator>, ) -> Target { let _false = self._false(); let gate = ExponentiationGate::new_from_config(self.config.clone()); let num_power_bits = gate.num_power_bits; let mut exp_bits_vec: Vec = exponent_bits.into_iter().map(|b| *b.borrow()).collect(); while exp_bits_vec.len() < num_power_bits { exp_bits_vec.push(_false); } let gate_index = self.add_gate(gate.clone(), vec![]); self.connect(base, Target::wire(gate_index, gate.wire_base())); exp_bits_vec.iter().enumerate().for_each(|(i, bit)| { self.connect(bit.target, Target::wire(gate_index, gate.wire_power_bit(i))); }); Target::wire(gate_index, gate.wire_output()) } // TODO: Test /// Exponentiate `base` to the power of `exponent`, where `exponent < 2^num_bits`. pub fn exp(&mut self, base: Target, exponent: Target, num_bits: usize) -> Target { let exponent_bits = self.split_le(exponent, num_bits); self.exp_from_bits(base, exponent_bits.iter()) } /// Exponentiate `base` to the power of a known `exponent`. // TODO: Test pub fn exp_u64(&mut self, base: Target, mut exponent: u64) -> Target { let mut exp_bits = Vec::new(); while exponent != 0 { let bit = (exponent & 1) == 1; let bit_target = self.constant_bool(bit); exp_bits.push(bit_target); exponent >>= 1; } self.exp_from_bits(base, exp_bits) } /// Computes `x / y`. Results in an unsatisfiable instance if `y = 0`. pub fn div(&mut self, x: Target, y: Target) -> Target { let x = self.convert_to_ext(x); let y = self.convert_to_ext(y); self.div_extension(x, y).0[0] } /// Computes `1 / x`. Results in an unsatisfiable instance if `x = 0`. pub fn inverse(&mut self, x: Target) -> Target { let x_ext = self.convert_to_ext(x); self.inverse_extension(x_ext).0[0] } }