use std::marker::PhantomData; use itertools::Itertools; use maybe_rayon::*; use plonky2::field::extension::{Extendable, FieldExtension}; use plonky2::field::packed::PackedField; use plonky2::field::polynomial::PolynomialValues; use plonky2::field::types::Field; use plonky2::hash::hash_types::RichField; use plonky2::timed; use plonky2::util::timing::TimingTree; use plonky2::util::transpose; use crate::constraint_consumer::{ConstraintConsumer, RecursiveConstraintConsumer}; use crate::cross_table_lookup::Column; use crate::lookup::{eval_lookups, eval_lookups_circuit, permuted_cols}; use crate::memory::columns::{ value_limb, ADDR_CONTEXT, ADDR_SEGMENT, ADDR_VIRTUAL, CONTEXT_FIRST_CHANGE, COUNTER, COUNTER_PERMUTED, FILTER, IS_READ, NUM_COLUMNS, RANGE_CHECK, RANGE_CHECK_PERMUTED, SEGMENT_FIRST_CHANGE, TIMESTAMP, VIRTUAL_FIRST_CHANGE, }; use crate::memory::VALUE_LIMBS; use crate::permutation::PermutationPair; use crate::stark::Stark; use crate::vars::{StarkEvaluationTargets, StarkEvaluationVars}; use crate::witness::memory::MemoryOpKind::Read; use crate::witness::memory::{MemoryAddress, MemoryOp}; pub fn ctl_data() -> Vec> { let mut res = Column::singles([IS_READ, ADDR_CONTEXT, ADDR_SEGMENT, ADDR_VIRTUAL]).collect_vec(); res.extend(Column::singles((0..8).map(value_limb))); res.push(Column::single(TIMESTAMP)); res } pub fn ctl_filter() -> Column { Column::single(FILTER) } #[derive(Copy, Clone, Default)] pub struct MemoryStark { pub(crate) f: PhantomData, } impl MemoryOp { /// Generate a row for a given memory operation. Note that this does not generate columns which /// depend on the next operation, such as `CONTEXT_FIRST_CHANGE`; those are generated later. /// It also does not generate columns such as `COUNTER`, which are generated later, after the /// trace has been transposed into column-major form. fn into_row(self) -> [F; NUM_COLUMNS] { let mut row = [F::ZERO; NUM_COLUMNS]; row[FILTER] = F::from_bool(self.filter); row[TIMESTAMP] = F::from_canonical_usize(self.timestamp); row[IS_READ] = F::from_bool(self.kind == Read); let MemoryAddress { context, segment, virt, } = self.address; row[ADDR_CONTEXT] = F::from_canonical_usize(context); row[ADDR_SEGMENT] = F::from_canonical_usize(segment); row[ADDR_VIRTUAL] = F::from_canonical_usize(virt); for j in 0..VALUE_LIMBS { row[value_limb(j)] = F::from_canonical_u32((self.value >> (j * 32)).low_u32()); } row } } fn get_max_range_check(memory_ops: &[MemoryOp]) -> usize { memory_ops .iter() .tuple_windows() .map(|(curr, next)| { if curr.address.context != next.address.context { next.address.context - curr.address.context - 1 } else if curr.address.segment != next.address.segment { next.address.segment - curr.address.segment - 1 } else if curr.address.virt != next.address.virt { next.address.virt - curr.address.virt - 1 } else { next.timestamp - curr.timestamp } }) .max() .unwrap_or(0) } /// Generates the `_FIRST_CHANGE` columns and the `RANGE_CHECK` column in the trace. pub fn generate_first_change_flags_and_rc(trace_rows: &mut [[F; NUM_COLUMNS]]) { let num_ops = trace_rows.len(); for idx in 0..num_ops - 1 { let row = trace_rows[idx].as_slice(); let next_row = trace_rows[idx + 1].as_slice(); let context = row[ADDR_CONTEXT]; let segment = row[ADDR_SEGMENT]; let virt = row[ADDR_VIRTUAL]; let timestamp = row[TIMESTAMP]; let next_context = next_row[ADDR_CONTEXT]; let next_segment = next_row[ADDR_SEGMENT]; let next_virt = next_row[ADDR_VIRTUAL]; let next_timestamp = next_row[TIMESTAMP]; let context_changed = context != next_context; let segment_changed = segment != next_segment; let virtual_changed = virt != next_virt; let context_first_change = context_changed; let segment_first_change = segment_changed && !context_first_change; let virtual_first_change = virtual_changed && !segment_first_change && !context_first_change; let row = trace_rows[idx].as_mut_slice(); row[CONTEXT_FIRST_CHANGE] = F::from_bool(context_first_change); row[SEGMENT_FIRST_CHANGE] = F::from_bool(segment_first_change); row[VIRTUAL_FIRST_CHANGE] = F::from_bool(virtual_first_change); row[RANGE_CHECK] = if context_first_change { next_context - context - F::ONE } else if segment_first_change { next_segment - segment - F::ONE } else if virtual_first_change { next_virt - virt - F::ONE } else { next_timestamp - timestamp }; } } impl, const D: usize> MemoryStark { /// Generate most of the trace rows. Excludes a few columns like `COUNTER`, which are generated /// later, after transposing to column-major form. fn generate_trace_row_major(&self, mut memory_ops: Vec) -> Vec<[F; NUM_COLUMNS]> { memory_ops.sort_by_key(|op| { ( op.address.context, op.address.segment, op.address.virt, op.timestamp, ) }); Self::pad_memory_ops(&mut memory_ops); let mut trace_rows = memory_ops .into_par_iter() .map(|op| op.into_row()) .collect::>(); generate_first_change_flags_and_rc(trace_rows.as_mut_slice()); trace_rows } /// Generates the `COUNTER`, `RANGE_CHECK_PERMUTED` and `COUNTER_PERMUTED` columns, given a /// trace in column-major form. fn generate_trace_col_major(trace_col_vecs: &mut [Vec]) { let height = trace_col_vecs[0].len(); trace_col_vecs[COUNTER] = (0..height).map(|i| F::from_canonical_usize(i)).collect(); let (permuted_inputs, permuted_table) = permuted_cols(&trace_col_vecs[RANGE_CHECK], &trace_col_vecs[COUNTER]); trace_col_vecs[RANGE_CHECK_PERMUTED] = permuted_inputs; trace_col_vecs[COUNTER_PERMUTED] = permuted_table; } fn pad_memory_ops(memory_ops: &mut Vec) { let num_ops = memory_ops.len(); let max_range_check = get_max_range_check(memory_ops); let num_ops_padded = num_ops.max(max_range_check + 1).next_power_of_two(); let to_pad = num_ops_padded - num_ops; let last_op = *memory_ops.last().expect("No memory ops?"); // We essentially repeat the last operation until our operation list has the desired size, // with a few changes: // - We change its filter to 0 to indicate that this is a dummy operation. // - We increment its timestamp in order to pass the ordering check. // - We make sure it's a read, sine dummy operations must be reads. for i in 0..to_pad { memory_ops.push(MemoryOp { filter: false, timestamp: last_op.timestamp + i + 1, kind: Read, ..last_op }); } } pub(crate) fn generate_trace( &self, memory_ops: Vec, timing: &mut TimingTree, ) -> Vec> { // Generate most of the trace in row-major form. let trace_rows = timed!( timing, "generate trace rows", self.generate_trace_row_major(memory_ops) ); let trace_row_vecs: Vec<_> = trace_rows.into_iter().map(|row| row.to_vec()).collect(); // Transpose to column-major form. let mut trace_col_vecs = transpose(&trace_row_vecs); // A few final generation steps, which work better in column-major form. Self::generate_trace_col_major(&mut trace_col_vecs); trace_col_vecs .into_iter() .map(|column| PolynomialValues::new(column)) .collect() } } impl, const D: usize> Stark for MemoryStark { const COLUMNS: usize = NUM_COLUMNS; fn eval_packed_generic( &self, vars: StarkEvaluationVars, yield_constr: &mut ConstraintConsumer

, ) where FE: FieldExtension, P: PackedField, { let one = P::from(FE::ONE); let timestamp = vars.local_values[TIMESTAMP]; let addr_context = vars.local_values[ADDR_CONTEXT]; let addr_segment = vars.local_values[ADDR_SEGMENT]; let addr_virtual = vars.local_values[ADDR_VIRTUAL]; let values: Vec<_> = (0..8).map(|i| vars.local_values[value_limb(i)]).collect(); let next_timestamp = vars.next_values[TIMESTAMP]; let next_is_read = vars.next_values[IS_READ]; let next_addr_context = vars.next_values[ADDR_CONTEXT]; let next_addr_segment = vars.next_values[ADDR_SEGMENT]; let next_addr_virtual = vars.next_values[ADDR_VIRTUAL]; let next_values: Vec<_> = (0..8).map(|i| vars.next_values[value_limb(i)]).collect(); // The filter must be 0 or 1. let filter = vars.local_values[FILTER]; yield_constr.constraint(filter * (filter - P::ONES)); // If this is a dummy row (filter is off), it must be a read. This means the prover can // insert reads which never appear in the CPU trace (which are harmless), but not writes. let is_dummy = P::ONES - filter; let is_write = P::ONES - vars.local_values[IS_READ]; yield_constr.constraint(is_dummy * is_write); let context_first_change = vars.local_values[CONTEXT_FIRST_CHANGE]; let segment_first_change = vars.local_values[SEGMENT_FIRST_CHANGE]; let virtual_first_change = vars.local_values[VIRTUAL_FIRST_CHANGE]; let address_unchanged = one - context_first_change - segment_first_change - virtual_first_change; let range_check = vars.local_values[RANGE_CHECK]; let not_context_first_change = one - context_first_change; let not_segment_first_change = one - segment_first_change; let not_virtual_first_change = one - virtual_first_change; let not_address_unchanged = one - address_unchanged; // First set of ordering constraint: first_change flags are boolean. yield_constr.constraint(context_first_change * not_context_first_change); yield_constr.constraint(segment_first_change * not_segment_first_change); yield_constr.constraint(virtual_first_change * not_virtual_first_change); yield_constr.constraint(address_unchanged * not_address_unchanged); // Second set of ordering constraints: no change before the column corresponding to the nonzero first_change flag. yield_constr .constraint_transition(segment_first_change * (next_addr_context - addr_context)); yield_constr .constraint_transition(virtual_first_change * (next_addr_context - addr_context)); yield_constr .constraint_transition(virtual_first_change * (next_addr_segment - addr_segment)); yield_constr.constraint_transition(address_unchanged * (next_addr_context - addr_context)); yield_constr.constraint_transition(address_unchanged * (next_addr_segment - addr_segment)); yield_constr.constraint_transition(address_unchanged * (next_addr_virtual - addr_virtual)); // Third set of ordering constraints: range-check difference in the column that should be increasing. let computed_range_check = context_first_change * (next_addr_context - addr_context - one) + segment_first_change * (next_addr_segment - addr_segment - one) + virtual_first_change * (next_addr_virtual - addr_virtual - one) + address_unchanged * (next_timestamp - timestamp); yield_constr.constraint_transition(range_check - computed_range_check); // Enumerate purportedly-ordered log. for i in 0..8 { yield_constr .constraint(next_is_read * address_unchanged * (next_values[i] - values[i])); } eval_lookups(vars, yield_constr, RANGE_CHECK_PERMUTED, COUNTER_PERMUTED) } fn eval_ext_circuit( &self, builder: &mut plonky2::plonk::circuit_builder::CircuitBuilder, vars: StarkEvaluationTargets, yield_constr: &mut RecursiveConstraintConsumer, ) { let one = builder.one_extension(); let addr_context = vars.local_values[ADDR_CONTEXT]; let addr_segment = vars.local_values[ADDR_SEGMENT]; let addr_virtual = vars.local_values[ADDR_VIRTUAL]; let values: Vec<_> = (0..8).map(|i| vars.local_values[value_limb(i)]).collect(); let timestamp = vars.local_values[TIMESTAMP]; let next_addr_context = vars.next_values[ADDR_CONTEXT]; let next_addr_segment = vars.next_values[ADDR_SEGMENT]; let next_addr_virtual = vars.next_values[ADDR_VIRTUAL]; let next_values: Vec<_> = (0..8).map(|i| vars.next_values[value_limb(i)]).collect(); let next_is_read = vars.next_values[IS_READ]; let next_timestamp = vars.next_values[TIMESTAMP]; // The filter must be 0 or 1. let filter = vars.local_values[FILTER]; let constraint = builder.mul_sub_extension(filter, filter, filter); yield_constr.constraint(builder, constraint); // If this is a dummy row (filter is off), it must be a read. This means the prover can // insert reads which never appear in the CPU trace (which are harmless), but not writes. let is_dummy = builder.sub_extension(one, filter); let is_write = builder.sub_extension(one, vars.local_values[IS_READ]); let is_dummy_write = builder.mul_extension(is_dummy, is_write); yield_constr.constraint(builder, is_dummy_write); let context_first_change = vars.local_values[CONTEXT_FIRST_CHANGE]; let segment_first_change = vars.local_values[SEGMENT_FIRST_CHANGE]; let virtual_first_change = vars.local_values[VIRTUAL_FIRST_CHANGE]; let address_unchanged = { let mut cur = builder.sub_extension(one, context_first_change); cur = builder.sub_extension(cur, segment_first_change); builder.sub_extension(cur, virtual_first_change) }; let range_check = vars.local_values[RANGE_CHECK]; let not_context_first_change = builder.sub_extension(one, context_first_change); let not_segment_first_change = builder.sub_extension(one, segment_first_change); let not_virtual_first_change = builder.sub_extension(one, virtual_first_change); let not_address_unchanged = builder.sub_extension(one, address_unchanged); let addr_context_diff = builder.sub_extension(next_addr_context, addr_context); let addr_segment_diff = builder.sub_extension(next_addr_segment, addr_segment); let addr_virtual_diff = builder.sub_extension(next_addr_virtual, addr_virtual); // First set of ordering constraint: traces are boolean. let context_first_change_bool = builder.mul_extension(context_first_change, not_context_first_change); yield_constr.constraint(builder, context_first_change_bool); let segment_first_change_bool = builder.mul_extension(segment_first_change, not_segment_first_change); yield_constr.constraint(builder, segment_first_change_bool); let virtual_first_change_bool = builder.mul_extension(virtual_first_change, not_virtual_first_change); yield_constr.constraint(builder, virtual_first_change_bool); let address_unchanged_bool = builder.mul_extension(address_unchanged, not_address_unchanged); yield_constr.constraint(builder, address_unchanged_bool); // Second set of ordering constraints: no change before the column corresponding to the nonzero first_change flag. let segment_first_change_check = builder.mul_extension(segment_first_change, addr_context_diff); yield_constr.constraint_transition(builder, segment_first_change_check); let virtual_first_change_check_1 = builder.mul_extension(virtual_first_change, addr_context_diff); yield_constr.constraint_transition(builder, virtual_first_change_check_1); let virtual_first_change_check_2 = builder.mul_extension(virtual_first_change, addr_segment_diff); yield_constr.constraint_transition(builder, virtual_first_change_check_2); let address_unchanged_check_1 = builder.mul_extension(address_unchanged, addr_context_diff); yield_constr.constraint_transition(builder, address_unchanged_check_1); let address_unchanged_check_2 = builder.mul_extension(address_unchanged, addr_segment_diff); yield_constr.constraint_transition(builder, address_unchanged_check_2); let address_unchanged_check_3 = builder.mul_extension(address_unchanged, addr_virtual_diff); yield_constr.constraint_transition(builder, address_unchanged_check_3); // Third set of ordering constraints: range-check difference in the column that should be increasing. let context_diff = { let diff = builder.sub_extension(next_addr_context, addr_context); builder.sub_extension(diff, one) }; let context_range_check = builder.mul_extension(context_first_change, context_diff); let segment_diff = { let diff = builder.sub_extension(next_addr_segment, addr_segment); builder.sub_extension(diff, one) }; let segment_range_check = builder.mul_extension(segment_first_change, segment_diff); let virtual_diff = { let diff = builder.sub_extension(next_addr_virtual, addr_virtual); builder.sub_extension(diff, one) }; let virtual_range_check = builder.mul_extension(virtual_first_change, virtual_diff); let timestamp_diff = builder.sub_extension(next_timestamp, timestamp); let timestamp_range_check = builder.mul_extension(address_unchanged, timestamp_diff); let computed_range_check = { let mut sum = builder.add_extension(context_range_check, segment_range_check); sum = builder.add_extension(sum, virtual_range_check); builder.add_extension(sum, timestamp_range_check) }; let range_check_diff = builder.sub_extension(range_check, computed_range_check); yield_constr.constraint_transition(builder, range_check_diff); // Enumerate purportedly-ordered log. for i in 0..8 { let value_diff = builder.sub_extension(next_values[i], values[i]); let zero_if_read = builder.mul_extension(address_unchanged, value_diff); let read_constraint = builder.mul_extension(next_is_read, zero_if_read); yield_constr.constraint(builder, read_constraint); } eval_lookups_circuit( builder, vars, yield_constr, RANGE_CHECK_PERMUTED, COUNTER_PERMUTED, ) } fn constraint_degree(&self) -> usize { 3 } fn permutation_pairs(&self) -> Vec { vec![ PermutationPair::singletons(RANGE_CHECK, RANGE_CHECK_PERMUTED), PermutationPair::singletons(COUNTER, COUNTER_PERMUTED), ] } } #[cfg(test)] pub(crate) mod tests { use anyhow::Result; use plonky2::plonk::config::{GenericConfig, PoseidonGoldilocksConfig}; use crate::memory::memory_stark::MemoryStark; use crate::stark_testing::{test_stark_circuit_constraints, test_stark_low_degree}; #[test] fn test_stark_degree() -> Result<()> { const D: usize = 2; type C = PoseidonGoldilocksConfig; type F = >::F; type S = MemoryStark; let stark = S { f: Default::default(), }; test_stark_low_degree(stark) } #[test] fn test_stark_circuit() -> Result<()> { const D: usize = 2; type C = PoseidonGoldilocksConfig; type F = >::F; type S = MemoryStark; let stark = S { f: Default::default(), }; test_stark_circuit_constraints::(stark) } }