use anyhow::Result; use rayon::prelude::*; use crate::circuit_data::CommonCircuitData; use crate::field::extension_field::Extendable; use crate::field::extension_field::{FieldExtension, Frobenius}; use crate::field::field::Field; use crate::fri::{prover::fri_proof, verifier::verify_fri_proof}; use crate::merkle_tree::MerkleTree; use crate::plonk_challenger::Challenger; use crate::plonk_common::PlonkPolynomials; use crate::polynomial::polynomial::{PolynomialCoeffs, PolynomialValues}; use crate::proof::{FriProof, FriProofTarget, Hash, OpeningSet}; use crate::timed; use crate::util::scaling::ReducingFactor; use crate::util::{log2_strict, reverse_bits, reverse_index_bits_in_place, transpose}; pub const SALT_SIZE: usize = 2; pub struct ListPolynomialCommitment { pub polynomials: Vec>, pub merkle_tree: MerkleTree, pub degree: usize, pub degree_log: usize, pub rate_bits: usize, pub blinding: bool, } impl ListPolynomialCommitment { /// Creates a list polynomial commitment for the polynomials interpolating the values in `values`. pub fn new(values: Vec>, rate_bits: usize, blinding: bool) -> Self { let degree = values[0].len(); let polynomials = values .par_iter() .map(|v| v.clone().ifft()) .collect::>(); let lde_values = timed!( Self::lde_values(&polynomials, rate_bits, blinding), "to compute LDE" ); Self::new_from_data(polynomials, lde_values, degree, rate_bits, blinding) } /// Creates a list polynomial commitment for the polynomials `polynomials`. pub fn new_from_polys( polynomials: Vec>, rate_bits: usize, blinding: bool, ) -> Self { let degree = polynomials[0].len(); let lde_values = timed!( Self::lde_values(&polynomials, rate_bits, blinding), "to compute LDE" ); Self::new_from_data(polynomials, lde_values, degree, rate_bits, blinding) } fn new_from_data( polynomials: Vec>, lde_values: Vec>, degree: usize, rate_bits: usize, blinding: bool, ) -> Self { let mut leaves = timed!(transpose(&lde_values), "to transpose LDEs"); reverse_index_bits_in_place(&mut leaves); let merkle_tree = timed!(MerkleTree::new(leaves, false), "to build Merkle tree"); Self { polynomials, merkle_tree, degree, degree_log: log2_strict(degree), rate_bits, blinding, } } fn lde_values( polynomials: &[PolynomialCoeffs], rate_bits: usize, blinding: bool, ) -> Vec> { let degree = polynomials[0].len(); polynomials .par_iter() .map(|p| { assert_eq!(p.len(), degree, "Polynomial degree invalid."); p.clone().lde(rate_bits).coset_fft(F::coset_shift()).values }) .chain(if blinding { // If blinding, salt with two random elements to each leaf vector. (0..SALT_SIZE) .map(|_| F::rand_vec(degree << rate_bits)) .collect() } else { Vec::new() }) .collect() } pub fn get_lde_values(&self, index: usize) -> &[F] { let index = reverse_bits(index, self.degree_log + self.rate_bits); let slice = &self.merkle_tree.leaves[index]; &slice[..slice.len() - if self.blinding { SALT_SIZE } else { 0 }] } /// Takes the commitments to the constants - sigmas - wires - zs - quotient — polynomials, /// and an opening point `zeta` and produces a batched opening proof + opening set. pub fn open_plonk( commitments: &[&Self; 4], zeta: F::Extension, challenger: &mut Challenger, common_data: &CommonCircuitData, ) -> (OpeningProof, OpeningSet) where F: Extendable, { let config = &common_data.config.fri_config; assert!(D > 1, "Not implemented for D=1."); let degree_log = commitments[0].degree_log; let g = F::Extension::primitive_root_of_unity(degree_log); for p in &[zeta, g * zeta] { assert_ne!( p.exp(1 << degree_log as u64), F::Extension::ONE, "Opening point is in the subgroup." ); } let os = OpeningSet::new( zeta, g, commitments[0], commitments[1], commitments[2], commitments[3], common_data, ); challenger.observe_opening_set(&os); let alpha = challenger.get_extension_challenge(); let mut alpha = ReducingFactor::new(alpha); // Final low-degree polynomial that goes into FRI. let mut final_poly = PolynomialCoeffs::empty(); let mut zs_polys = commitments[PlonkPolynomials::ZS_PARTIAL_PRODUCTS.index] .polynomials .iter() .map(|p| p.to_extension()) .collect::>(); let partial_products_polys = zs_polys.split_off(common_data.zs_range().end); // Polynomials opened at a single point. let single_polys = [ PlonkPolynomials::CONSTANTS_SIGMAS, PlonkPolynomials::QUOTIENT, ] .iter() .flat_map(|&p| &commitments[p.index].polynomials) .map(|p| p.to_extension()) .chain(partial_products_polys); let single_composition_poly = alpha.reduce_polys(single_polys); let single_quotient = Self::compute_quotient([zeta], single_composition_poly); final_poly += single_quotient; alpha.reset(); // Zs polynomials are opened at `zeta` and `g*zeta`. let zs_composition_poly = alpha.reduce_polys(zs_polys.into_iter()); let zs_quotient = Self::compute_quotient([zeta, g * zeta], zs_composition_poly); alpha.shift_poly(&mut final_poly); final_poly += zs_quotient; // When working in an extension field, need to check that wires are in the base field. // Check this by opening the wires polynomials at `zeta` and `zeta.frobenius()` and using the fact that // a polynomial `f` is over the base field iff `f(z).frobenius()=f(z.frobenius())` with high probability. let wire_polys = commitments[PlonkPolynomials::WIRES.index] .polynomials .iter() .map(|p| p.to_extension()); let wire_composition_poly = alpha.reduce_polys(wire_polys); let wires_quotient = Self::compute_quotient([zeta, zeta.frobenius()], wire_composition_poly); alpha.shift_poly(&mut final_poly); final_poly += wires_quotient; let lde_final_poly = final_poly.lde(config.rate_bits); let lde_final_values = lde_final_poly .clone() .coset_fft(F::Extension::from_basefield( F::MULTIPLICATIVE_GROUP_GENERATOR, )); let fri_proof = fri_proof( &commitments .par_iter() .map(|c| &c.merkle_tree) .collect::>(), &lde_final_poly, &lde_final_values, challenger, &config, ); ( OpeningProof { fri_proof, quotient_degree: final_poly.len(), }, os, ) } /// Given `points=(x_i)`, `evals=(y_i)` and `poly=P` with `P(x_i)=y_i`, computes the polynomial /// `Q=(P-I)/Z` where `I` interpolates `(x_i, y_i)` and `Z` is the vanishing polynomial on `(x_i)`. fn compute_quotient( points: [F::Extension; N], poly: PolynomialCoeffs, ) -> PolynomialCoeffs where F: Extendable, { let quotient = if N == 1 { poly.divide_by_linear(points[0]).0 } else if N == 2 { // The denominator is `(X - p0)(X - p1) = p0 p1 - (p0 + p1) X + X^2`. let denominator = vec![ points[0] * points[1], -points[0] - points[1], F::Extension::ONE, ] .into(); poly.div_rem_long_division(&denominator).0 // Could also use `divide_by_linear` twice. } else { unreachable!("This shouldn't happen. Plonk should open polynomials at 1 or 2 points.") }; quotient.padded(quotient.degree_plus_one().next_power_of_two()) } } pub struct OpeningProof, const D: usize> { fri_proof: FriProof, // TODO: Get the degree from `CommonCircuitData` instead. quotient_degree: usize, } impl, const D: usize> OpeningProof { pub fn verify( &self, zeta: F::Extension, os: &OpeningSet, merkle_roots: &[Hash], challenger: &mut Challenger, common_data: &CommonCircuitData, ) -> Result<()> { challenger.observe_opening_set(os); let alpha = challenger.get_extension_challenge(); verify_fri_proof( log2_strict(self.quotient_degree), &os, zeta, alpha, merkle_roots, &self.fri_proof, challenger, common_data, ) } } pub struct OpeningProofTarget { fri_proof: FriProofTarget, } #[cfg(test)] mod tests { use anyhow::Result; use super::*; use crate::circuit_data::CircuitConfig; use crate::fri::FriConfig; use crate::plonk_common::PlonkPolynomials; fn gen_random_test_case, const D: usize>( k: usize, degree_log: usize, ) -> Vec> { let degree = 1 << degree_log; (0..k) .map(|_| PolynomialValues::new(F::rand_vec(degree))) .collect() } fn gen_random_point, const D: usize>( degree_log: usize, ) -> F::Extension { let degree = 1 << degree_log; let mut point = F::Extension::rand(); while point.exp(degree as u64).is_one() { point = F::Extension::rand(); } point } fn check_batch_polynomial_commitment, const D: usize>() -> Result<()> { let ks = [10, 2, 10, 8]; let degree_log = 11; let fri_config = FriConfig { proof_of_work_bits: 2, rate_bits: 2, reduction_arity_bits: vec![2, 3, 1, 2], num_query_rounds: 3, }; // We only care about `fri_config, num_constants`, and `num_routed_wires` here. let common_data = CommonCircuitData { config: CircuitConfig { fri_config, num_routed_wires: 6, ..CircuitConfig::large_config() }, degree_bits: 0, gates: vec![], quotient_degree_factor: 0, num_gate_constraints: 0, num_constants: 4, k_is: vec![F::ONE; 6], num_partial_products: (0, 0), circuit_digest: Hash::from_partial(vec![]), }; let lpcs = (0..4) .map(|i| { ListPolynomialCommitment::::new( gen_random_test_case(ks[i], degree_log), common_data.config.fri_config.rate_bits, PlonkPolynomials::polynomials(i).blinding, ) }) .collect::>(); let zeta = gen_random_point::(degree_log); let (proof, os) = ListPolynomialCommitment::open_plonk::( &[&lpcs[0], &lpcs[1], &lpcs[2], &lpcs[3]], zeta, &mut Challenger::new(), &common_data, ); proof.verify( zeta, &os, &[ lpcs[0].merkle_tree.root, lpcs[1].merkle_tree.root, lpcs[2].merkle_tree.root, lpcs[3].merkle_tree.root, ], &mut Challenger::new(), &common_data, ) } mod quadratic { use super::*; use crate::field::crandall_field::CrandallField; #[test] fn test_batch_polynomial_commitment() -> Result<()> { check_batch_polynomial_commitment::() } } mod quartic { use super::*; use crate::field::crandall_field::CrandallField; #[test] fn test_batch_polynomial_commitment() -> Result<()> { check_batch_polynomial_commitment::() } } }