//! Arithmetic and logic unit. pub(crate) const IS_ADD: usize = super::START_ALU; pub(crate) const IS_SUB: usize = IS_ADD + 1; pub(crate) const IS_MUL_ADD: usize = IS_SUB + 1; pub(crate) const IS_DIV: usize = IS_MUL_ADD + 1; const START_SHARED_COLS: usize = IS_DIV + 1; /// Within the ALU, there are shared columns which can be used by any arithmetic/logic /// circuit, depending on which one is active this cycle. // Can be increased as needed as other operations are implemented. const NUM_SHARED_COLS: usize = 4; const fn shared_col(i: usize) -> usize { debug_assert!(i < NUM_SHARED_COLS); START_SHARED_COLS + i } /// The first value to be added; treated as an unsigned u32. pub(crate) const COL_ADD_INPUT_0: usize = shared_col(0); /// The second value to be added; treated as an unsigned u32. pub(crate) const COL_ADD_INPUT_1: usize = shared_col(1); /// The third value to be added; treated as an unsigned u32. pub(crate) const COL_ADD_INPUT_2: usize = shared_col(2); // Note: Addition outputs three 16-bit chunks, and since these values need to be range-checked // anyway, we might as well use the range check unit's columns as our addition outputs. So the // three proceeding columns are basically aliases, not columns owned by the ALU. /// The first 16-bit chunk of the output, based on little-endian ordering. pub(crate) const COL_ADD_OUTPUT_0: usize = super::range_check_16::col_rc_16_input(0); /// The second 16-bit chunk of the output, based on little-endian ordering. pub(crate) const COL_ADD_OUTPUT_1: usize = super::range_check_16::col_rc_16_input(1); /// The third 16-bit chunk of the output, based on little-endian ordering. pub(crate) const COL_ADD_OUTPUT_2: usize = super::range_check_16::col_rc_16_input(2); /// Inputs for subtraction; the second value is subtracted from the /// first; inputs treated as an unsigned u32. pub(crate) const COL_SUB_INPUT_0: usize = shared_col(0); pub(crate) const COL_SUB_INPUT_1: usize = shared_col(1); /// The first 16-bit chunk of the output, based on little-endian ordering. pub(crate) const COL_SUB_OUTPUT_0: usize = super::range_check_16::col_rc_16_input(0); /// The second 16-bit chunk of the output, based on little-endian ordering. pub(crate) const COL_SUB_OUTPUT_1: usize = super::range_check_16::col_rc_16_input(1); /// The borrow output pub(crate) const COL_SUB_OUTPUT_BORROW: usize = super::boolean::col_bit(0); /// The first value to be multiplied; treated as an unsigned u32. pub(crate) const COL_MUL_ADD_FACTOR_0: usize = shared_col(0); /// The second value to be multiplied; treated as an unsigned u32. pub(crate) const COL_MUL_ADD_FACTOR_1: usize = shared_col(1); /// The value to be added to the product; treated as an unsigned u32. pub(crate) const COL_MUL_ADD_ADDEND: usize = shared_col(2); /// The inverse of `u32::MAX - result_hi`, where `output_hi` is the high 32-bits of the result. /// See https://hackmd.io/NC-yRmmtRQSvToTHb96e8Q#Checking-element-validity pub(crate) const COL_MUL_ADD_RESULT_CANONICAL_INV: usize = shared_col(3); /// The first 16-bit chunk of the output, based on little-endian ordering. pub(crate) const COL_MUL_ADD_OUTPUT_0: usize = super::range_check_16::col_rc_16_input(0); /// The second 16-bit chunk of the output, based on little-endian ordering. pub(crate) const COL_MUL_ADD_OUTPUT_1: usize = super::range_check_16::col_rc_16_input(1); /// The third 16-bit chunk of the output, based on little-endian ordering. pub(crate) const COL_MUL_ADD_OUTPUT_2: usize = super::range_check_16::col_rc_16_input(2); /// The fourth 16-bit chunk of the output, based on little-endian ordering. pub(crate) const COL_MUL_ADD_OUTPUT_3: usize = super::range_check_16::col_rc_16_input(3); pub(super) const END: usize = super::START_ALU + NUM_SHARED_COLS;