use std::convert::TryInto; use std::ops::Range; use std::marker::PhantomData; use crate::circuit_builder::CircuitBuilder; use crate::field::extension_field::algebra::ExtensionAlgebra; use crate::field::extension_field::target::ExtensionTarget; use crate::field::extension_field::{FieldExtension, Extendable}; use crate::field::field::Field; use crate::gates::gate::{Gate, GateRef}; use crate::generator::{SimpleGenerator, WitnessGenerator}; use crate::target::Target; use crate::vars::{EvaluationTargets, EvaluationVars}; use crate::wire::Wire; use crate::witness::PartialWitness; /// A gate for inserting a value into a list at a non-deterministic location. #[derive(Clone, Debug)] pub(crate) struct InsertionGate, const D: usize> { pub vec_size: usize, pub _phantom: PhantomData, } impl, const D: usize> InsertionGate { pub fn new(vec_size: usize) -> GateRef { let gate = Self { vec_size, _phantom: PhantomData, }; GateRef::new(gate) } pub fn wires_insertion_index() -> usize { 0 } pub fn wires_element_to_insert() -> Range { 1..D+1 } pub fn wires_list_item(i: usize) -> Range { let start = (i + 1) * D + 1; start..start + D } fn start_of_output_wires(&self) -> usize { (self.vec_size + 1) * D + 1 } pub fn wires_output_list_item(&self, i: usize) -> Range { let start = self.start_of_output_wires() + i * D; start..start + D } fn start_of_intermediate_wires(&self) -> usize { self.start_of_output_wires() + self.vec_size * D } /// The wires corresponding to the "equality_dummy" variable in the gadget (non-gate) insert function. pub fn equality_dummy_for_round_r(&self, r: usize) -> Range { let start = self.start_of_intermediate_wires() + D * r; start..start + D } } impl, const D: usize> Gate for InsertionGate { fn id(&self) -> String { format!("{:?}", self, D) } fn eval_unfiltered(&self, vars: EvaluationVars) -> Vec { let insertion_index = vars.local_wires[Self::wires_insertion_index()]; let mut list_items = Vec::new(); for i in 0..self.vec_size { list_items.push(vars.get_local_ext_algebra(Self::wires_list_item(i))); } let dummy_value : ExtensionAlgebra = F::Extension::ZERO.into(); // will never be reached list_items.push(dummy_value); let mut output_list_items = Vec::new(); for i in 0..self.vec_size+1 { output_list_items.push(vars.get_local_ext_algebra(self.wires_output_list_item(i))); } let element_to_insert = vars.get_local_ext_algebra(Self::wires_element_to_insert()); let mut constraints = Vec::new(); let mut already_inserted : ExtensionAlgebra = F::Extension::ZERO.into(); for r in 0..self.vec_size + 1 { let cur_index = F::Extension::from_canonical_usize(r); let equality_dummy = vars.get_local_ext_algebra(self.equality_dummy_for_round_r(r)); let difference = cur_index - insertion_index; let insert_here : ExtensionAlgebra = if difference == F::Extension::ZERO { F::Extension::ZERO.into() } else { F::Extension::ONE.into() }; // The two equality constraints: let difference_algebra : ExtensionAlgebra = difference.into(); let equality_dummy_constraint : ExtensionAlgebra = difference_algebra * equality_dummy - insert_here; constraints.extend(equality_dummy_constraint.to_basefield_array()); let mul_to_zero_constraint : ExtensionAlgebra = (F::Extension::ONE.into() - insert_here) * difference; constraints.extend(mul_to_zero_constraint.to_basefield_array()); let mut new_item = insert_here * element_to_insert + already_inserted; if r > 0 { new_item += already_inserted * list_items[r - 1]; } already_inserted += insert_here; new_item += (F::Extension::ONE.into() - already_inserted) * list_items[r]; constraints.extend((new_item - output_list_items[r]).to_basefield_array()); } constraints } fn eval_unfiltered_recursively( &self, builder: &mut CircuitBuilder, vars: EvaluationTargets, ) -> Vec> { todo!() } fn generators( &self, gate_index: usize, local_constants: &[F], ) -> Vec>> { let gen = InsertionGenerator:: { gate_index, gate: self.clone(), _phantom: PhantomData, }; vec![Box::new(gen)] } fn num_wires(&self) -> usize { let num_input_wires = self.vec_size + 1; // the original vector, and the insertion index let num_output_wires = self.vec_size + 1; // the final vector, with the inserted element let num_intermediate_wires = 6 * self.vec_size; // six intermediate variables needed for each element of the vector self.vec_size + 1 } fn num_constants(&self) -> usize { 0 } fn degree(&self) -> usize { 1 } fn num_constraints(&self) -> usize { 1 } } #[derive(Debug)] struct InsertionGenerator, const D: usize> { gate_index: usize, gate: InsertionGate, _phantom: PhantomData, } impl, const D: usize> SimpleGenerator for InsertionGenerator { fn dependencies(&self) -> Vec { let local_target = |input| { Target::Wire(Wire { gate: self.gate_index, input, }) }; let local_targets = |inputs: Range| inputs.map(local_target); let mut deps = Vec::new(); deps.push(local_target(InsertionGate::::wires_insertion_index())); deps.extend(local_targets(InsertionGate::::wires_element_to_insert())); for i in 0..self.gate.vec_size { deps.extend(local_targets(InsertionGate::::wires_list_item(i))); } deps } fn run_once(&self, witness: &PartialWitness) -> PartialWitness { let local_wire = |input| Wire { gate: self.gate_index, input, }; let get_local_wire = |input| witness.get_wire(local_wire(input)); let get_local_ext = |wire_range: Range| { debug_assert_eq!(wire_range.len(), D); let values = wire_range.map(get_local_wire).collect::>(); let arr = values.try_into().unwrap(); F::Extension::from_basefield_array(arr) }; // Compute the new vector, and the equality dummy values. todo!() } } #[cfg(test)] mod tests { }