use alloc::vec::Vec; use crate::packed::PackedField; use crate::types::Field; /// Precomputations of the evaluation of `Z_H(X) = X^n - 1` on a coset `gK` with `H <= K`. pub struct ZeroPolyOnCoset { /// `n = |H|`. n: F, /// `rate = |K|/|H|`. rate: usize, /// Holds `g^n * (w^n)^i - 1 = g^n * v^i - 1` for `i in 0..rate`, with `w` a generator of `K` and `v` a /// `rate`-primitive root of unity. evals: Vec, /// Holds the multiplicative inverses of `evals`. inverses: Vec, } impl ZeroPolyOnCoset { pub fn new(n_log: usize, rate_bits: usize) -> Self { let g_pow_n = F::coset_shift().exp_power_of_2(n_log); let evals = F::two_adic_subgroup(rate_bits) .into_iter() .map(|x| g_pow_n * x - F::ONE) .collect::>(); let inverses = F::batch_multiplicative_inverse(&evals); Self { n: F::from_canonical_usize(1 << n_log), rate: 1 << rate_bits, evals, inverses, } } /// Returns `Z_H(g * w^i)`. pub fn eval(&self, i: usize) -> F { self.evals[i % self.rate] } /// Returns `1 / Z_H(g * w^i)`. pub fn eval_inverse(&self, i: usize) -> F { self.inverses[i % self.rate] } /// Like `eval_inverse`, but for a range of indices starting with `i_start`. pub fn eval_inverse_packed>(&self, i_start: usize) -> P { let mut packed = P::ZEROS; packed .as_slice_mut() .iter_mut() .enumerate() .for_each(|(j, packed_j)| *packed_j = self.eval_inverse(i_start + j)); packed } /// Returns `L_0(x) = Z_H(x)/(n * (x - 1))` with `x = w^i`. pub fn eval_l_0(&self, i: usize, x: F) -> F { // Could also precompute the inverses using Montgomery. self.eval(i) * (self.n * (x - F::ONE)).inverse() } }