use std::marker::PhantomData; use crate::field::extension_field::target::ExtensionTarget; use crate::field::extension_field::Extendable; use crate::field::field_types::{Field, PrimeField, RichField}; use crate::gates::gate::Gate; use crate::iop::generator::{GeneratedValues, SimpleGenerator, WitnessGenerator}; use crate::iop::target::Target; use crate::iop::wire::Wire; use crate::iop::witness::{PartitionWitness, Witness}; use crate::plonk::circuit_builder::CircuitBuilder; use crate::plonk::circuit_data::CircuitConfig; use crate::plonk::vars::{EvaluationTargets, EvaluationVars, EvaluationVarsBase}; use crate::util::{bits_u64, ceil_div_usize}; /// A gate for checking that one value is smaller than another. #[derive(Clone, Debug)] pub(crate) struct ComparisonGate, const D: usize> { pub(crate) num_copies: usize, pub(crate) num_bits: usize, pub(crate) num_chunks: usize, _phantom: PhantomData, } impl, const D: usize> ComparisonGate { pub fn new(num_copies: usize, num_bits: usize, num_chunks: usize) -> Self { Self { num_copies, num_bits, num_chunks, _phantom: PhantomData, } } pub fn field_bits() -> usize { bits_u64(F::ORDER) } pub fn chunk_bits(&self) -> usize { ceil_div_usize(self.num_bits, self.num_chunks) } pub fn new_from_config(config: CircuitConfig, num_bits: usize, num_chunks: usize) -> Self { let num_copies = Self::max_num_copies(config.num_routed_wires, num_bits, num_chunks); Self::new(num_copies, num_bits, num_chunks) } pub fn max_num_copies(num_routed_wires: usize, num_bits: usize, num_chunks: usize) -> usize { let chunk_bits = ceil_div_usize(num_bits, num_chunks); let wires_per_copy = 4 + chunk_bits + 4 * num_chunks; num_routed_wires / wires_per_copy } pub fn wires_per_copy(&self) -> usize { 4 + self.chunk_bits() + 4 * self.num_chunks } pub fn wire_first_input(&self, copy: usize) -> usize { debug_assert!(copy < self.num_copies); copy * self.wires_per_copy() } pub fn wire_second_input(&self, copy: usize) -> usize { debug_assert!(copy < self.num_copies); copy * self.wires_per_copy() + 1 } pub fn wire_z_val(&self, copy: usize) -> usize { copy * self.wires_per_copy() + 3 } pub fn wire_z_bit(&self, copy: usize, bit_index: usize) -> usize { debug_assert!(bit_index < self.chunk_bits() + 1); copy * self.wires_per_copy() + 4 + bit_index } pub fn wire_first_chunk_val(&self, copy: usize, chunk: usize) -> usize { debug_assert!(copy < self.num_copies); debug_assert!(chunk < self.num_chunks); copy * self.wires_per_copy() + 4 + self.chunk_bits() + chunk } pub fn wire_second_chunk_val(&self, copy: usize, chunk: usize) -> usize { debug_assert!(copy < self.num_copies); debug_assert!(chunk < self.num_chunks); copy * self.wires_per_copy() + 4 + self.chunk_bits() + self.num_chunks + chunk } pub fn wire_equality_dummy(&self, copy: usize, chunk: usize) -> usize { debug_assert!(copy < self.num_copies); debug_assert!(chunk < self.num_chunks); copy * self.wires_per_copy() + 4 + self.chunk_bits() + 2 * self.num_chunks + chunk } pub fn wire_chunks_equal(&self, copy: usize, chunk: usize) -> usize { debug_assert!(copy < self.num_copies); debug_assert!(chunk < self.num_chunks); copy * self.wires_per_copy() + 4 + self.chunk_bits() + 3 * self.num_chunks + chunk } } impl, const D: usize> Gate for ComparisonGate { fn id(&self) -> String { format!("{:?}", self, D) } fn eval_unfiltered(&self, vars: EvaluationVars) -> Vec { let mut constraints = Vec::with_capacity(self.num_constraints()); for c in 0..self.num_copies { let first_input = vars.local_wires[self.wire_first_input(c)]; let second_input = vars.local_wires[self.wire_second_input(c)]; // Get chunks and assert that they match let first_chunks: Vec = (0..self.num_chunks) .map(|i| vars.local_wires[self.wire_first_chunk_val(c, i)]) .collect(); let second_chunks: Vec = (0..self.num_chunks) .map(|i| vars.local_wires[self.wire_second_chunk_val(c, i)]) .collect(); let chunk_base_powers: Vec = (0..self.chunk_bits()) .map(|i| F::Extension::TWO.exp_u64((i * self.chunk_bits()) as u64)) .collect(); let first_chunks_combined = first_chunks .iter() .zip(chunk_base_powers.iter()) .map(|(b, x)| *b * *x) .fold(F::Extension::ZERO, |a, b| a + b); let second_chunks_combined = second_chunks .iter() .zip(chunk_base_powers.iter()) .map(|(b, x)| *b * *x) .fold(F::Extension::ZERO, |a, b| a + b); constraints.push(first_chunks_combined - first_input); constraints.push(second_chunks_combined - second_input); // Get bits to assert they match the chosen chunk. let powers_of_two: Vec = (0..self.chunk_bits()) .map(|i| F::Extension::TWO.exp_u64(i as u64)) .collect(); let mut most_significant_diff = first_chunks[self.num_chunks - 1] - second_chunks[self.num_chunks - 1]; // Find the chosen chunk. for i in (0..self.num_chunks).rev() { let difference = first_chunks[i] - second_chunks[i]; let equality_dummy = vars.local_wires[self.wire_equality_dummy(c, i)]; let chunks_equal = vars.local_wires[self.wire_chunks_equal(c, i)]; // Two constraints identifying index. constraints.push(difference * equality_dummy - (F::Extension::ONE - chunks_equal)); constraints.push(chunks_equal * difference); let this_diff = first_chunks[i] - second_chunks[i]; most_significant_diff = chunks_equal * most_significant_diff + (F::Extension::ONE - chunks_equal) * this_diff; } let z_bits: Vec = (0..self.chunk_bits() + 1) .map(|i| vars.local_wires[self.wire_z_bit(c, i)]) .collect(); let powers_of_two: Vec = (0..self.chunk_bits() + 1) .map(|i| F::Extension::TWO.exp_u64(i as u64)) .collect(); let z_bits_combined = z_bits .iter() .zip(powers_of_two.iter()) .map(|(b, x)| *b * *x) .fold(F::Extension::ZERO, |a, b| a + b); let two_n = F::Extension::TWO.exp_u64(self.chunk_bits() as u64); constraints.push(z_bits_combined - (two_n + most_significant_diff)); constraints.push(z_bits[self.chunk_bits() - 1]); } constraints } fn eval_unfiltered_base(&self, vars: EvaluationVarsBase) -> Vec { todo!() } fn eval_unfiltered_recursively( &self, builder: &mut CircuitBuilder, vars: EvaluationTargets, ) -> Vec> { todo!() } fn generators( &self, gate_index: usize, _local_constants: &[F], ) -> Vec>> { (0..self.num_copies) .map(|c| { let gen = ComparisonGenerator:: { gate_index, gate: self.clone(), copy: c, }; let g: Box> = Box::new(gen.adapter()); g }) .collect() } fn num_wires(&self) -> usize { self.wire_chunks_equal(self.num_copies - 1, self.num_chunks - 1) + 1 } fn num_constants(&self) -> usize { 0 } fn degree(&self) -> usize { 2 } fn num_constraints(&self) -> usize { 4 * self.num_copies * self.chunk_bits() } } #[derive(Debug)] struct ComparisonGenerator, const D: usize> { gate_index: usize, gate: ComparisonGate, copy: usize, } impl, const D: usize> SimpleGenerator for ComparisonGenerator { fn dependencies(&self) -> Vec { let local_target = |input| Target::wire(self.gate_index, input); let mut deps = Vec::new(); deps.push(local_target(self.gate.wire_first_input(self.copy))); deps.push(local_target(self.gate.wire_second_input(self.copy))); deps } fn run_once(&self, witness: &PartitionWitness, out_buffer: &mut GeneratedValues) { let local_wire = |input| Wire { gate: self.gate_index, input, }; let get_local_wire = |input| witness.get_wire(local_wire(input)); let first_input = get_local_wire(self.gate.wire_first_input(self.copy)); let second_input = get_local_wire(self.gate.wire_second_input(self.copy)); let field_bits = bits_u64(F::ORDER); let first_input_u64 = first_input.to_canonical_u64(); let second_input_u64 = second_input.to_canonical_u64(); let first_input_bits: Vec = (0..field_bits) .scan(first_input_u64, |acc, _| { let tmp = *acc % 2; *acc /= 2; Some(F::from_canonical_u64(tmp)) }) .collect(); let second_input_bits: Vec = (0..field_bits) .scan(second_input_u64, |acc, _| { let tmp = *acc % 2; *acc /= 2; Some(F::from_canonical_u64(tmp)) }) .collect(); let powers_of_two: Vec = (0..self.gate.chunk_bits()) .map(|i| F::TWO.exp_u64(i as u64)) .collect(); let first_input_chunks: Vec = first_input_bits .chunks(self.gate.chunk_bits()) .map(|bits| { bits.iter() .zip(powers_of_two.iter()) .map(|(b, x)| *b * *x) .fold(F::ZERO, |a, b| a + b) }) .collect(); let second_input_chunks: Vec = second_input_bits .chunks(self.gate.chunk_bits()) .map(|bits| { bits.iter() .zip(powers_of_two.iter()) .map(|(b, x)| *b * *x) .fold(F::ZERO, |a, b| a + b) }) .collect(); let chunks_equal: Vec = (0..self.gate.num_chunks) .map(|i| F::from_bool(first_input_chunks[i] == second_input_chunks[i])) .collect(); let equality_dummies: Vec = first_input_chunks .iter() .zip(second_input_chunks.iter()) .map(|(f, s)| if *f == *s { F::ONE } else { F::ONE / (*f - *s) }) .collect(); let z = F::TWO.exp_u64(self.gate.chunk_bits() as u64) + first_input - second_input; let z_bits: Vec = (0..self.gate.chunk_bits() + 1) .scan(z.to_canonical_u64(), |acc, _| { let tmp = *acc % 2; *acc /= 2; Some(F::from_canonical_u64(tmp)) }) .collect(); out_buffer.set_wire(local_wire(self.gate.wire_z_val(self.copy)), z); for b in 0..self.gate.chunk_bits() + 1 { out_buffer.set_wire(local_wire(self.gate.wire_z_bit(self.copy, b)), z_bits[b]); } for i in 0..self.gate.num_chunks { out_buffer.set_wire( local_wire(self.gate.wire_first_chunk_val(self.copy, i)), first_input_chunks[i], ); out_buffer.set_wire( local_wire(self.gate.wire_second_chunk_val(self.copy, i)), second_input_chunks[i], ); out_buffer.set_wire( local_wire(self.gate.wire_chunks_equal(self.copy, i)), chunks_equal[i], ); out_buffer.set_wire( local_wire(self.gate.wire_equality_dummy(self.copy, i)), equality_dummies[i], ); } } } #[cfg(test)] mod tests { use std::marker::PhantomData; use anyhow::Result; use crate::field::crandall_field::CrandallField; use crate::field::extension_field::quartic::QuarticExtension; use crate::field::field_types::Field; use crate::gates::comparison::ComparisonGate; use crate::gates::gate::Gate; use crate::gates::gate_testing::{test_eval_fns, test_low_degree}; use crate::hash::hash_types::HashOut; use crate::plonk::circuit_data::CircuitConfig; use crate::plonk::vars::EvaluationVars; #[test] fn wire_indices() { type CG = ComparisonGate; let num_bits = 40; let num_copies = 3; let num_chunks = 5; let gate = CG { num_bits, num_chunks, num_copies, _phantom: PhantomData, }; assert_eq!(gate.wire_first_input(0), 0); assert_eq!(gate.wire_second_input(0), 1); assert_eq!(gate.wire_z_val(0), 2); assert_eq!(gate.wire_z_bit(0, 0), 3); assert_eq!(gate.wire_z_bit(0, 3), 6); assert_eq!(gate.wire_first_chunk_val(0, 0), 7); assert_eq!(gate.wire_first_chunk_val(0, 0), 7); assert_eq!(gate.wire_first_input(0, 0), 0); assert_eq!(gate.wire_first_input(0, 2), 2); assert_eq!(gate.wire_second_input(0, 0), 3); assert_eq!(gate.wire_second_input(0, 2), 5); assert_eq!(gate.wire_first_output(0, 0), 6); assert_eq!(gate.wire_second_output(0, 2), 11); assert_eq!(gate.wire_switch_bool(0), 12); assert_eq!(gate.wire_first_input(1, 0), 13); assert_eq!(gate.wire_second_output(1, 2), 24); assert_eq!(gate.wire_switch_bool(1), 25); assert_eq!(gate.wire_first_input(2, 0), 26); assert_eq!(gate.wire_second_output(2, 2), 37); assert_eq!(gate.wire_switch_bool(2), 38); } #[test] fn low_degree() { test_low_degree::(SwitchGate::<_, 4>::new_from_config( CircuitConfig::large_config(), 3, )); } #[test] fn eval_fns() -> Result<()> { test_eval_fns::(SwitchGate::<_, 4>::new_from_config( CircuitConfig::large_config(), 3, )) } #[test] fn test_gate_constraint() { type F = CrandallField; type FF = QuarticCrandallField; const D: usize = 4; const CHUNK_SIZE: usize = 4; let num_copies = 3; /// Returns the local wires for a switch gate given the inputs and the switch booleans. fn get_wires( first_inputs: Vec>, second_inputs: Vec>, switch_bools: Vec, ) -> Vec { let num_copies = first_inputs.len(); let mut v = Vec::new(); for c in 0..num_copies { let switch = switch_bools[c]; let mut first_input_chunk = Vec::with_capacity(CHUNK_SIZE); let mut second_input_chunk = Vec::with_capacity(CHUNK_SIZE); let mut first_output_chunk = Vec::with_capacity(CHUNK_SIZE); let mut second_output_chunk = Vec::with_capacity(CHUNK_SIZE); for e in 0..CHUNK_SIZE { let first_input = first_inputs[c][e]; let second_input = second_inputs[c][e]; let first_output = if switch { second_input } else { first_input }; let second_output = if switch { first_input } else { second_input }; first_input_chunk.push(first_input); second_input_chunk.push(second_input); first_output_chunk.push(first_output); second_output_chunk.push(second_output); } v.append(&mut first_input_chunk); v.append(&mut second_input_chunk); v.append(&mut first_output_chunk); v.append(&mut second_output_chunk); v.push(F::from_bool(switch)); } v.iter().map(|&x| x.into()).collect::>() } let first_inputs: Vec> = (0..num_copies).map(|_| F::rand_vec(CHUNK_SIZE)).collect(); let second_inputs: Vec> = (0..num_copies).map(|_| F::rand_vec(CHUNK_SIZE)).collect(); let switch_bools = vec![true, false, true]; let gate = SwitchGate:: { chunk_bits: CHUNK_SIZE, num_copies, _phantom: PhantomData, }; let vars = EvaluationVars { local_constants: &[], local_wires: &get_wires(first_inputs, second_inputs, switch_bools), public_inputs_hash: &HashOut::rand(), }; assert!( gate.eval_unfiltered(vars).iter().all(|x| x.is_zero()), "Gate constraints are not satisfied." ); } }