use crate::circuit_builder::CircuitBuilder; use crate::circuit_data::{CircuitConfig, CommonCircuitData, VerifierCircuitTarget}; use crate::context; use crate::field::extension_field::Extendable; use crate::plonk_challenger::RecursiveChallenger; use crate::proof::{HashTarget, ProofWithPublicInputsTarget}; use crate::util::reducing::ReducingFactorTarget; use crate::vanishing_poly::eval_vanishing_poly_recursively; use crate::vars::EvaluationTargets; const MIN_WIRES: usize = 120; // TODO: Double check. const MIN_ROUTED_WIRES: usize = 28; // TODO: Double check. impl, const D: usize> CircuitBuilder { /// Recursively verifies an inner proof. pub fn add_recursive_verifier( &mut self, proof_with_pis: ProofWithPublicInputsTarget, inner_config: &CircuitConfig, inner_verifier_data: &VerifierCircuitTarget, inner_common_data: &CommonCircuitData, ) { assert!(self.config.num_wires >= MIN_WIRES); assert!(self.config.num_wires >= MIN_ROUTED_WIRES); let ProofWithPublicInputsTarget { proof, public_inputs, } = proof_with_pis; let one = self.one_extension(); let num_challenges = inner_config.num_challenges; let public_inputs_hash = &self.hash_n_to_hash(public_inputs, true); let mut challenger = RecursiveChallenger::new(self); let (betas, gammas, alphas, zeta) = context!(self, "observe proof and generates challenges", { // Observe the instance. let digest = HashTarget::from_vec( self.constants(&inner_common_data.circuit_digest.elements), ); challenger.observe_hash(&digest); challenger.observe_hash(&public_inputs_hash); challenger.observe_hash(&proof.wires_root); let betas = challenger.get_n_challenges(self, num_challenges); let gammas = challenger.get_n_challenges(self, num_challenges); challenger.observe_hash(&proof.plonk_zs_partial_products_root); let alphas = challenger.get_n_challenges(self, num_challenges); challenger.observe_hash(&proof.quotient_polys_root); let zeta = challenger.get_extension_challenge(self); (betas, gammas, alphas, zeta) }); let local_constants = &proof.openings.constants; let local_wires = &proof.openings.wires; let vars = EvaluationTargets { local_constants, local_wires, public_inputs_hash, }; let local_zs = &proof.openings.plonk_zs; let next_zs = &proof.openings.plonk_zs_right; let s_sigmas = &proof.openings.plonk_sigmas; let partial_products = &proof.openings.partial_products; let zeta_pow_deg = self.exp_power_of_2_extension(zeta, inner_common_data.degree_bits); let vanishing_polys_zeta = context!( self, "evaluate the vanishing polynomial at our challenge point, zeta.", eval_vanishing_poly_recursively( self, inner_common_data, zeta, zeta_pow_deg, vars, local_zs, next_zs, partial_products, s_sigmas, &betas, &gammas, &alphas, ) ); context!(self, "check vanishing and quotient polynomials.", { let quotient_polys_zeta = &proof.openings.quotient_polys; let mut scale = ReducingFactorTarget::new(zeta_pow_deg); let z_h_zeta = self.sub_extension(zeta_pow_deg, one); for (i, chunk) in quotient_polys_zeta .chunks(inner_common_data.quotient_degree_factor) .enumerate() { let recombined_quotient = scale.reduce(chunk, self); let computed_vanishing_poly = self.mul_extension(z_h_zeta, recombined_quotient); self.named_assert_equal_extension( vanishing_polys_zeta[i], computed_vanishing_poly, format!("Vanishing polynomial == Z_H * quotient, challenge {}", i), ); } }); let merkle_roots = &[ inner_verifier_data.constants_sigmas_root, proof.wires_root, proof.plonk_zs_partial_products_root, proof.quotient_polys_root, ]; proof.opening_proof.verify( zeta, &proof.openings, merkle_roots, &mut challenger, inner_common_data, self, ); } } #[cfg(test)] mod tests { use anyhow::Result; use super::*; use crate::field::crandall_field::CrandallField; use crate::fri::FriConfig; use crate::gadgets::polynomial::PolynomialCoeffsExtTarget; use crate::merkle_proofs::MerkleProofTarget; use crate::polynomial::commitment::OpeningProofTarget; use crate::proof::{ FriInitialTreeProofTarget, FriProofTarget, FriQueryRoundTarget, FriQueryStepTarget, OpeningSetTarget, Proof, ProofTarget, ProofWithPublicInputs, }; use crate::verifier::verify; use crate::witness::PartialWitness; // Construct a `FriQueryRoundTarget` with the same dimensions as the ones in `proof`. fn get_fri_query_round, const D: usize>( proof: &Proof, builder: &mut CircuitBuilder, ) -> FriQueryRoundTarget { let mut query_round = FriQueryRoundTarget { initial_trees_proof: FriInitialTreeProofTarget { evals_proofs: vec![], }, steps: vec![], }; for (v, merkle_proof) in &proof.opening_proof.fri_proof.query_round_proofs[0] .initial_trees_proof .evals_proofs { query_round.initial_trees_proof.evals_proofs.push(( builder.add_virtual_targets(v.len()), MerkleProofTarget { siblings: builder.add_virtual_hashes(merkle_proof.siblings.len()), }, )); } for step in &proof.opening_proof.fri_proof.query_round_proofs[0].steps { query_round.steps.push(FriQueryStepTarget { evals: builder.add_virtual_extension_targets(step.evals.len()), merkle_proof: MerkleProofTarget { siblings: builder.add_virtual_hashes(step.merkle_proof.siblings.len()), }, }); } query_round } // Construct a `ProofTarget` with the same dimensions as `proof`. fn proof_to_proof_target, const D: usize>( proof_with_pis: &ProofWithPublicInputs, builder: &mut CircuitBuilder, ) -> ProofWithPublicInputsTarget { let ProofWithPublicInputs { proof, public_inputs, } = proof_with_pis; let wires_root = builder.add_virtual_hash(); let plonk_zs_root = builder.add_virtual_hash(); let quotient_polys_root = builder.add_virtual_hash(); let openings = OpeningSetTarget { constants: builder.add_virtual_extension_targets(proof.openings.constants.len()), plonk_sigmas: builder.add_virtual_extension_targets(proof.openings.plonk_sigmas.len()), wires: builder.add_virtual_extension_targets(proof.openings.wires.len()), plonk_zs: builder.add_virtual_extension_targets(proof.openings.plonk_zs.len()), plonk_zs_right: builder .add_virtual_extension_targets(proof.openings.plonk_zs_right.len()), partial_products: builder .add_virtual_extension_targets(proof.openings.partial_products.len()), quotient_polys: builder .add_virtual_extension_targets(proof.openings.quotient_polys.len()), }; let query_round_proofs = (0..proof.opening_proof.fri_proof.query_round_proofs.len()) .map(|_| get_fri_query_round(proof, builder)) .collect(); let commit_phase_merkle_roots = (0..proof .opening_proof .fri_proof .commit_phase_merkle_roots .len()) .map(|_| builder.add_virtual_hash()) .collect(); let opening_proof = OpeningProofTarget { fri_proof: FriProofTarget { commit_phase_merkle_roots, query_round_proofs, final_poly: PolynomialCoeffsExtTarget(builder.add_virtual_extension_targets( proof.opening_proof.fri_proof.final_poly.len(), )), pow_witness: builder.add_virtual_target(), }, }; let proof = ProofTarget { wires_root, plonk_zs_partial_products_root: plonk_zs_root, quotient_polys_root, openings, opening_proof, }; let public_inputs = builder.add_virtual_targets(public_inputs.len()); ProofWithPublicInputsTarget { proof, public_inputs, } } // Set the targets in a `ProofTarget` to their corresponding values in a `Proof`. fn set_proof_target, const D: usize>( proof: &ProofWithPublicInputs, pt: &ProofWithPublicInputsTarget, pw: &mut PartialWitness, ) { let ProofWithPublicInputs { proof, public_inputs, } = proof; let ProofWithPublicInputsTarget { proof: pt, public_inputs: pi_targets, } = pt; // Set public inputs. for (&pi_t, &pi) in pi_targets.iter().zip(public_inputs) { pw.set_target(pi_t, pi); } pw.set_hash_target(pt.wires_root, proof.wires_root); pw.set_hash_target( pt.plonk_zs_partial_products_root, proof.plonk_zs_partial_products_root, ); pw.set_hash_target(pt.quotient_polys_root, proof.quotient_polys_root); for (&t, &x) in pt.openings.wires.iter().zip(&proof.openings.wires) { pw.set_extension_target(t, x); } for (&t, &x) in pt.openings.constants.iter().zip(&proof.openings.constants) { pw.set_extension_target(t, x); } for (&t, &x) in pt .openings .plonk_sigmas .iter() .zip(&proof.openings.plonk_sigmas) { pw.set_extension_target(t, x); } for (&t, &x) in pt.openings.plonk_zs.iter().zip(&proof.openings.plonk_zs) { pw.set_extension_target(t, x); } for (&t, &x) in pt .openings .plonk_zs_right .iter() .zip(&proof.openings.plonk_zs_right) { pw.set_extension_target(t, x); } for (&t, &x) in pt .openings .partial_products .iter() .zip(&proof.openings.partial_products) { pw.set_extension_target(t, x); } for (&t, &x) in pt .openings .quotient_polys .iter() .zip(&proof.openings.quotient_polys) { pw.set_extension_target(t, x); } let fri_proof = &proof.opening_proof.fri_proof; let fpt = &pt.opening_proof.fri_proof; pw.set_target(fpt.pow_witness, fri_proof.pow_witness); for (&t, &x) in fpt.final_poly.0.iter().zip(&fri_proof.final_poly.coeffs) { pw.set_extension_target(t, x); } for (&t, &x) in fpt .commit_phase_merkle_roots .iter() .zip(&fri_proof.commit_phase_merkle_roots) { pw.set_hash_target(t, x); } for (qt, q) in fpt .query_round_proofs .iter() .zip(&fri_proof.query_round_proofs) { for (at, a) in qt .initial_trees_proof .evals_proofs .iter() .zip(&q.initial_trees_proof.evals_proofs) { for (&t, &x) in at.0.iter().zip(&a.0) { pw.set_target(t, x); } for (&t, &x) in at.1.siblings.iter().zip(&a.1.siblings) { pw.set_hash_target(t, x); } } for (st, s) in qt.steps.iter().zip(&q.steps) { for (&t, &x) in st.evals.iter().zip(&s.evals) { pw.set_extension_target(t, x); } for (&t, &x) in st .merkle_proof .siblings .iter() .zip(&s.merkle_proof.siblings) { pw.set_hash_target(t, x); } } } } #[test] #[ignore] fn test_recursive_verifier() -> Result<()> { env_logger::init(); type F = CrandallField; const D: usize = 4; let config = CircuitConfig { num_wires: 126, num_routed_wires: 33, security_bits: 128, rate_bits: 3, num_challenges: 3, zero_knowledge: false, fri_config: FriConfig { proof_of_work_bits: 1, reduction_arity_bits: vec![2, 2, 2, 2, 2, 2], num_query_rounds: 40, }, }; let (proof_with_pis, vd, cd) = { let mut builder = CircuitBuilder::::new(config.clone()); let _two = builder.two(); let _two = builder.hash_n_to_hash(vec![_two], true).elements[0]; for _ in 0..10000 { let _two = builder.mul(_two, _two); } let data = builder.build(); ( data.prove(PartialWitness::new())?, data.verifier_only, data.common, ) }; verify(proof_with_pis.clone(), &vd, &cd)?; let mut builder = CircuitBuilder::::new(config.clone()); let mut pw = PartialWitness::new(); let pt = proof_to_proof_target(&proof_with_pis, &mut builder); set_proof_target(&proof_with_pis, &pt, &mut pw); let inner_data = VerifierCircuitTarget { constants_sigmas_root: builder.add_virtual_hash(), }; pw.set_hash_target(inner_data.constants_sigmas_root, vd.constants_sigmas_root); builder.add_recursive_verifier(pt, &config, &inner_data, &cd); builder.print_gate_counts(0); let data = builder.build(); let recursive_proof = data.prove(pw)?; verify(recursive_proof, &data.verifier_only, &data.common) } #[test] #[ignore] fn test_recursive_recursive_verifier() -> Result<()> { env_logger::init(); type F = CrandallField; const D: usize = 4; let config = CircuitConfig { num_wires: 126, num_routed_wires: 33, security_bits: 128, rate_bits: 3, num_challenges: 3, zero_knowledge: false, fri_config: FriConfig { proof_of_work_bits: 1, reduction_arity_bits: vec![2, 2, 2, 2, 2, 2], num_query_rounds: 40, }, }; let (proof_with_pis, vd, cd) = { let (proof_with_pis, vd, cd) = { let mut builder = CircuitBuilder::::new(config.clone()); let _two = builder.two(); let _two = builder.hash_n_to_hash(vec![_two], true).elements[0]; for _ in 0..10000 { let _two = builder.mul(_two, _two); } let data = builder.build(); ( data.prove(PartialWitness::new())?, data.verifier_only, data.common, ) }; verify(proof_with_pis.clone(), &vd, &cd)?; let mut builder = CircuitBuilder::::new(config.clone()); let mut pw = PartialWitness::new(); let pt = proof_to_proof_target(&proof_with_pis, &mut builder); set_proof_target(&proof_with_pis, &pt, &mut pw); let inner_data = VerifierCircuitTarget { constants_sigmas_root: builder.add_virtual_hash(), }; pw.set_hash_target(inner_data.constants_sigmas_root, vd.constants_sigmas_root); builder.add_recursive_verifier(pt, &config, &inner_data, &cd); let data = builder.build(); let recursive_proof = data.prove(pw)?; (recursive_proof, data.verifier_only, data.common) }; verify(proof_with_pis.clone(), &vd, &cd)?; let mut builder = CircuitBuilder::::new(config.clone()); let mut pw = PartialWitness::new(); let pt = proof_to_proof_target(&proof_with_pis, &mut builder); set_proof_target(&proof_with_pis, &pt, &mut pw); let inner_data = VerifierCircuitTarget { constants_sigmas_root: builder.add_virtual_hash(), }; pw.set_hash_target(inner_data.constants_sigmas_root, vd.constants_sigmas_root); builder.add_recursive_verifier(pt, &config, &inner_data, &cd); builder.print_gate_counts(0); let data = builder.build(); let recursive_proof = data.prove(pw)?; verify(recursive_proof, &data.verifier_only, &data.common) } }