use crate::circuit_builder::CircuitBuilder; use crate::circuit_data::CommonCircuitData; use crate::context; use crate::field::extension_field::target::{flatten_target, ExtensionTarget}; use crate::field::extension_field::Extendable; use crate::field::field::Field; use crate::fri::FriConfig; use crate::plonk_challenger::RecursiveChallenger; use crate::plonk_common::PlonkPolynomials; use crate::proof::{ FriInitialTreeProofTarget, FriProofTarget, FriQueryRoundTarget, HashTarget, OpeningSetTarget, }; use crate::target::Target; use crate::util::reducing::ReducingFactorTarget; use crate::util::{log2_strict, reverse_index_bits_in_place}; impl, const D: usize> CircuitBuilder { /// Computes P'(x^arity) from {P(x*g^i)}_(i=0..arity), where g is a `arity`-th root of unity /// and P' is the FRI reduced polynomial. fn compute_evaluation( &mut self, x: Target, old_x_index_bits: &[Target], arity_bits: usize, last_evals: &[ExtensionTarget], beta: ExtensionTarget, ) -> ExtensionTarget { let arity = 1 << arity_bits; debug_assert_eq!(last_evals.len(), arity); let g = F::primitive_root_of_unity(arity_bits); let g_inv = g.exp((arity as u64) - 1); let g_inv_t = self.constant(g_inv); // The evaluation vector needs to be reordered first. let mut evals = last_evals.to_vec(); reverse_index_bits_in_place(&mut evals); // Want `g^(arity - rev_old_x_index)` as in the out-of-circuit version. Compute it as `(g^-1)^rev_old_x_index`. let start = self.exp_from_bits(g_inv_t, old_x_index_bits.iter().rev()); let coset_start = self.mul(start, x); // The answer is gotten by interpolating {(x*g^i, P(x*g^i))} and evaluating at beta. let points = g .powers() .map(|y| { let yt = self.constant(y); self.mul(coset_start, yt) }) .zip(evals) .collect::>(); self.interpolate(&points, beta) } fn fri_verify_proof_of_work( &mut self, proof: &FriProofTarget, challenger: &mut RecursiveChallenger, config: &FriConfig, ) { let mut inputs = challenger.get_hash(self).elements.to_vec(); inputs.push(proof.pow_witness); let hash = self.hash_n_to_m(inputs, 1, false)[0]; self.assert_leading_zeros( hash, config.proof_of_work_bits + (64 - F::order().bits()) as u32, ); } pub fn verify_fri_proof( &mut self, purported_degree_log: usize, // Openings of the PLONK polynomials. os: &OpeningSetTarget, // Point at which the PLONK polynomials are opened. zeta: ExtensionTarget, // Scaling factor to combine polynomials. alpha: ExtensionTarget, initial_merkle_roots: &[HashTarget], proof: &FriProofTarget, challenger: &mut RecursiveChallenger, common_data: &CommonCircuitData, ) { let config = &common_data.config; let total_arities = config.fri_config.reduction_arity_bits.iter().sum::(); debug_assert_eq!( purported_degree_log, log2_strict(proof.final_poly.len()) + total_arities, "Final polynomial has wrong degree." ); // Size of the LDE domain. let n = proof.final_poly.len() << (total_arities + config.rate_bits); let betas = context!( self, "recover the random betas used in the FRI reductions.", proof .commit_phase_merkle_roots .iter() .map(|root| { challenger.observe_hash(root); challenger.get_extension_challenge(self) }) .collect::>() ); challenger.observe_extension_elements(&proof.final_poly.0); context!( self, "check PoW", self.fri_verify_proof_of_work(proof, challenger, &config.fri_config) ); // Check that parameters are coherent. debug_assert_eq!( config.fri_config.num_query_rounds, proof.query_round_proofs.len(), "Number of query rounds does not match config." ); debug_assert!( !config.fri_config.reduction_arity_bits.is_empty(), "Number of reductions should be non-zero." ); let precomputed_reduced_evals = PrecomputedReducedEvalsTarget::from_os_and_alpha(os, alpha, self); for (i, round_proof) in proof.query_round_proofs.iter().enumerate() { context!( self, &format!("verify {}'th FRI query", i), self.fri_verifier_query_round( zeta, alpha, precomputed_reduced_evals, initial_merkle_roots, proof, challenger, n, &betas, round_proof, common_data, ) ); } } fn fri_verify_initial_proof( &mut self, x_index_bits: &[Target], proof: &FriInitialTreeProofTarget, initial_merkle_roots: &[HashTarget], ) { for (i, ((evals, merkle_proof), &root)) in proof .evals_proofs .iter() .zip(initial_merkle_roots) .enumerate() { context!( self, &format!("verify {}'th initial Merkle proof", i), self.verify_merkle_proof(evals.clone(), x_index_bits, root, merkle_proof) ); } } fn fri_combine_initial( &mut self, proof: &FriInitialTreeProofTarget, alpha: ExtensionTarget, zeta: ExtensionTarget, subgroup_x: Target, precomputed_reduced_evals: PrecomputedReducedEvalsTarget, common_data: &CommonCircuitData, ) -> ExtensionTarget { assert!(D > 1, "Not implemented for D=1."); let config = self.config.clone(); let degree_log = proof.evals_proofs[0].1.siblings.len() - config.rate_bits; let subgroup_x = self.convert_to_ext(subgroup_x); let mut alpha = ReducingFactorTarget::new(alpha); let mut sum = self.zero_extension(); // We will add three terms to `sum`: // - one for polynomials opened at `x` only // - one for polynomials opened at `x` and `g x` // Polynomials opened at `x`, i.e., the constants-sigmas, wires, quotient and partial products polynomials. let single_evals = [ PlonkPolynomials::CONSTANTS_SIGMAS, PlonkPolynomials::WIRES, PlonkPolynomials::QUOTIENT, ] .iter() .flat_map(|&p| proof.unsalted_evals(p, config.zero_knowledge)) .chain( &proof.unsalted_evals(PlonkPolynomials::ZS_PARTIAL_PRODUCTS, config.zero_knowledge) [common_data.partial_products_range()], ) .copied() .collect::>(); let single_composition_eval = alpha.reduce_base(&single_evals, self); let single_numerator = self.sub_extension(single_composition_eval, precomputed_reduced_evals.single); let single_denominator = self.sub_extension(subgroup_x, zeta); let quotient = self.div_unsafe_extension(single_numerator, single_denominator); sum = self.add_extension(sum, quotient); alpha.reset(); // Polynomials opened at `x` and `g x`, i.e., the Zs polynomials. let zs_evals = proof .unsalted_evals(PlonkPolynomials::ZS_PARTIAL_PRODUCTS, config.zero_knowledge) .iter() .take(common_data.zs_range().end) .copied() .collect::>(); let zs_composition_eval = alpha.reduce_base(&zs_evals, self); let g = self.constant_extension(F::Extension::primitive_root_of_unity(degree_log)); let zeta_right = self.mul_extension(g, zeta); let interpol_val = self.interpolate2( [ (zeta, precomputed_reduced_evals.zs), (zeta_right, precomputed_reduced_evals.zs_right), ], subgroup_x, ); let zs_numerator = self.sub_extension(zs_composition_eval, interpol_val); let vanish_zeta = self.sub_extension(subgroup_x, zeta); let vanish_zeta_right = self.sub_extension(subgroup_x, zeta_right); let zs_denominator = self.mul_extension(vanish_zeta, vanish_zeta_right); let zs_quotient = self.div_unsafe_extension(zs_numerator, zs_denominator); sum = alpha.shift(sum, self); sum = self.add_extension(sum, zs_quotient); sum } fn fri_verifier_query_round( &mut self, zeta: ExtensionTarget, alpha: ExtensionTarget, precomputed_reduced_evals: PrecomputedReducedEvalsTarget, initial_merkle_roots: &[HashTarget], proof: &FriProofTarget, challenger: &mut RecursiveChallenger, n: usize, betas: &[ExtensionTarget], round_proof: &FriQueryRoundTarget, common_data: &CommonCircuitData, ) { let config = &common_data.config.fri_config; let n_log = log2_strict(n); // TODO: Do we need to range check `x_index` to a target smaller than `p`? let x_index = challenger.get_challenge(self); let mut x_index_bits = self.low_bits(x_index, n_log, 64); let mut domain_size = n; context!( self, "check FRI initial proof", self.fri_verify_initial_proof( &x_index_bits, &round_proof.initial_trees_proof, initial_merkle_roots, ) ); let mut old_x_index_bits = Vec::new(); // `subgroup_x` is `subgroup[x_index]`, i.e., the actual field element in the domain. let mut subgroup_x = context!(self, "compute x from its index", { let g = self.constant(F::MULTIPLICATIVE_GROUP_GENERATOR); let phi = self.constant(F::primitive_root_of_unity(n_log)); let phi = self.exp_from_bits(phi, x_index_bits.iter().rev()); self.mul(g, phi) }); let mut evaluations: Vec>> = Vec::new(); for (i, &arity_bits) in config.reduction_arity_bits.iter().enumerate() { let next_domain_size = domain_size >> arity_bits; let e_x = if i == 0 { context!( self, "combine initial oracles", self.fri_combine_initial( &round_proof.initial_trees_proof, alpha, zeta, subgroup_x, precomputed_reduced_evals, common_data, ) ) } else { let last_evals = &evaluations[i - 1]; // Infer P(y) from {P(x)}_{x^arity=y}. context!( self, "infer evaluation using interpolation", self.compute_evaluation( subgroup_x, &old_x_index_bits, config.reduction_arity_bits[i - 1], last_evals, betas[i - 1], ) ) }; let mut evals = round_proof.steps[i].evals.clone(); // Insert P(y) into the evaluation vector, since it wasn't included by the prover. let high_x_index_bits = x_index_bits.split_off(arity_bits); old_x_index_bits = x_index_bits; let low_x_index = self.le_sum(old_x_index_bits.iter()); evals = self.insert(low_x_index, e_x, evals); context!( self, "verify FRI round Merkle proof.", self.verify_merkle_proof( flatten_target(&evals), &high_x_index_bits, proof.commit_phase_merkle_roots[i], &round_proof.steps[i].merkle_proof, ) ); evaluations.push(evals); if i > 0 { // Update the point x to x^arity. subgroup_x = self.exp_power_of_2(subgroup_x, config.reduction_arity_bits[i - 1]); } domain_size = next_domain_size; x_index_bits = high_x_index_bits; } let last_evals = evaluations.last().unwrap(); let final_arity_bits = *config.reduction_arity_bits.last().unwrap(); let purported_eval = context!( self, "infer final evaluation using interpolation", self.compute_evaluation( subgroup_x, &old_x_index_bits, final_arity_bits, last_evals, *betas.last().unwrap(), ) ); subgroup_x = self.exp_power_of_2(subgroup_x, final_arity_bits); // Final check of FRI. After all the reductions, we check that the final polynomial is equal // to the one sent by the prover. let eval = context!( self, "evaluate final polynomial", proof.final_poly.eval_scalar(self, subgroup_x) ); self.assert_equal_extension(eval, purported_eval); } } #[derive(Copy, Clone)] struct PrecomputedReducedEvalsTarget { pub single: ExtensionTarget, pub zs: ExtensionTarget, pub zs_right: ExtensionTarget, } impl PrecomputedReducedEvalsTarget { fn from_os_and_alpha>( os: &OpeningSetTarget, alpha: ExtensionTarget, builder: &mut CircuitBuilder, ) -> Self { let mut alpha = ReducingFactorTarget::new(alpha); let single = alpha.reduce( &os.constants .iter() .chain(&os.plonk_sigmas) .chain(&os.wires) .chain(&os.quotient_polys) .chain(&os.partial_products) .copied() .collect::>(), builder, ); let zs = alpha.reduce(&os.plonk_zs, builder); let zs_right = alpha.reduce(&os.plonk_zs_right, builder); Self { single, zs, zs_right, } } }