use anyhow::Result; use ethereum_types::U256; use rand::{thread_rng, Rng}; use crate::cpu::kernel::aggregator::KERNEL; use crate::cpu::kernel::interpreter::run_interpreter; // TODO: 107 is hardcoded as a dummy prime for testing // should be changed to the proper implementation prime // once the run_{add, mul, sub}fp254 fns are implemented const P254: u32 = 107; fn add_fp(x: u32, y: u32) -> u32 { (x + y) % P254 } fn add3_fp(x: u32, y: u32, z: u32) -> u32 { (x + y + z) % P254 } fn mul_fp(x: u32, y: u32) -> u32 { (x * y) % P254 } fn sub_fp(x: u32, y: u32) -> u32 { (P254 + x - y) % P254 } fn add_fp2(a: [u32; 2], b: [u32; 2]) -> [u32; 2] { let [a, a_] = a; let [b, b_] = b; [add_fp(a, b), add_fp(a_, b_)] } fn add3_fp2(a: [u32; 2], b: [u32; 2], c: [u32; 2]) -> [u32; 2] { let [a, a_] = a; let [b, b_] = b; let [c, c_] = c; [add3_fp(a, b, c), add3_fp(a_, b_, c_)] } fn sub_fp2(a: [u32; 2], b: [u32; 2]) -> [u32; 2] { let [a, a_] = a; let [b, b_] = b; [sub_fp(a, b), sub_fp(a_, b_)] } fn mul_fp2(a: [u32; 2], b: [u32; 2]) -> [u32; 2] { let [a, a_] = a; let [b, b_] = b; [ sub_fp(mul_fp(a, b), mul_fp(a_, b_)), add_fp(mul_fp(a, b_), mul_fp(a_, b)), ] } fn i9(a: [u32; 2]) -> [u32; 2] { let [a, a_] = a; [sub_fp(mul_fp(9, a), a_), add_fp(a, mul_fp(9, a_))] } fn add_fp6(c: [[u32; 2]; 3], d: [[u32; 2]; 3]) -> [[u32; 2]; 3] { let [c0, c1, c2] = c; let [d0, d1, d2] = d; let e0 = add_fp2(c0, d0); let e1 = add_fp2(c1, d1); let e2 = add_fp2(c2, d2); [e0, e1, e2] } fn sub_fp6(c: [[u32; 2]; 3], d: [[u32; 2]; 3]) -> [[u32; 2]; 3] { let [c0, c1, c2] = c; let [d0, d1, d2] = d; let e0 = sub_fp2(c0, d0); let e1 = sub_fp2(c1, d1); let e2 = sub_fp2(c2, d2); [e0, e1, e2] } fn mul_fp6(c: [[u32; 2]; 3], d: [[u32; 2]; 3]) -> [[u32; 2]; 3] { let [c0, c1, c2] = c; let [d0, d1, d2] = d; let c0d0 = mul_fp2(c0, d0); let c0d1 = mul_fp2(c0, d1); let c0d2 = mul_fp2(c0, d2); let c1d0 = mul_fp2(c1, d0); let c1d1 = mul_fp2(c1, d1); let c1d2 = mul_fp2(c1, d2); let c2d0 = mul_fp2(c2, d0); let c2d1 = mul_fp2(c2, d1); let c2d2 = mul_fp2(c2, d2); let cd12 = add_fp2(c1d2, c2d1); [ add_fp2(c0d0, i9(cd12)), add3_fp2(c0d1, c1d0, i9(c2d2)), add3_fp2(c0d2, c1d1, c2d0), ] } fn sh(c: [[u32; 2]; 3]) -> [[u32; 2]; 3] { let [c0, c1, c2] = c; [i9(c2), c0, c1] } fn sparse_embed(x: [u32; 5]) -> [[[u32; 2]; 3]; 2] { let [g0, g1, g1_, g2, g2_] = x; [[[g0, 0], [g1, g1_], [0, 0]], [[0, 0], [g2, g2_], [0, 0]]] } fn mul_fp12(f: [[[u32; 2]; 3]; 2], g: [[[u32; 2]; 3]; 2]) -> [[[u32; 2]; 3]; 2] { let [f0, f1] = f; let [g0, g1] = g; let h0 = mul_fp6(f0, g0); let h1 = mul_fp6(f1, g1); let h01 = mul_fp6(add_fp6(f0, f1), add_fp6(g0, g1)); [add_fp6(h0, sh(h1)), sub_fp6(h01, add_fp6(h0, h1))] } fn gen_fp6() -> [[u32; 2]; 3] { let mut rng = thread_rng(); [ [rng.gen_range(0..P254), rng.gen_range(0..P254)], [rng.gen_range(0..P254), rng.gen_range(0..P254)], [rng.gen_range(0..P254), rng.gen_range(0..P254)], ] } fn gen_fp12_sparse() -> [[[u32; 2]; 3]; 2] { let mut rng = thread_rng(); sparse_embed([ rng.gen_range(0..P254), rng.gen_range(0..P254), rng.gen_range(0..P254), rng.gen_range(0..P254), rng.gen_range(0..P254), ]) } fn as_stack(xs: Vec) -> Vec { xs.iter().map(|&x| U256::from(x)).rev().collect() } #[test] fn test_fp6() -> Result<()> { let c = gen_fp6(); let d = gen_fp6(); let mut input: Vec = [c, d].into_iter().flatten().flatten().collect(); input.push(0xdeadbeef); let initial_offset = KERNEL.global_labels["mul_fp6"]; let initial_stack: Vec = as_stack(input); let final_stack: Vec = run_interpreter(initial_offset, initial_stack)? .stack() .to_vec(); let output: Vec = mul_fp6(c, d).into_iter().flatten().collect(); let expected = as_stack(output); assert_eq!(final_stack, expected); Ok(()) } fn make_initial_stack( in1: u32, in2: u32, out: u32, f0: [[u32; 2]; 3], f1: [[u32; 2]; 3], g0: [[u32; 2]; 3], g1: [[u32; 2]; 3], ) -> Vec { // stack: in0, f, in0', f', in1, g, in1', g', in1, out, in0, out let f0: Vec = f0.into_iter().flatten().collect(); let f1: Vec = f1.into_iter().flatten().collect(); let g0: Vec = g0.into_iter().flatten().collect(); let g1: Vec = g1.into_iter().flatten().collect(); let mut input = f0; input.extend(vec![in1]); input.extend(f1); input.extend(g0); input.extend(vec![in2]); input.extend(g1); input.extend(vec![in2, out, in1, out]); as_stack(input) } // #[test] fn test_fp12() -> Result<()> { let in1 = 64; let in2 = 76; let out = 88; let f0 = gen_fp6(); let f1 = gen_fp6(); let g0 = gen_fp6(); let g1 = gen_fp6(); let initial_offset = KERNEL.global_labels["test_mul_fp12"]; let initial_stack: Vec = make_initial_stack(in1, in2, out, f0, f1, g0, g1); let final_stack: Vec = run_interpreter(initial_offset, initial_stack)? .stack() .to_vec(); let mut output: Vec = mul_fp12([f0, f1], [g0, g1]) .into_iter() .flatten() .flatten() .collect(); output.extend(vec![out]); let expected = as_stack(output); assert_eq!(final_stack, expected); Ok(()) } // #[test] fn test_fp12_sparse() -> Result<()> { let in1 = 64; let in2 = 76; let out = 88; let f0 = gen_fp6(); let f1 = gen_fp6(); let [g0, g1] = gen_fp12_sparse(); let initial_offset = KERNEL.global_labels["test_mul_fp12"]; let initial_stack: Vec = make_initial_stack(in1, in2, out, f0, f1, g0, g1); let final_stack: Vec = run_interpreter(initial_offset, initial_stack)? .stack() .to_vec(); let mut output: Vec = mul_fp12([f0, f1], [g0, g1]) .into_iter() .flatten() .flatten() .collect(); output.extend(vec![out]); let expected = as_stack(output); assert_eq!(final_stack, expected); Ok(()) } #[test] fn test_fp12_square() -> Result<()> { let in1 = 64; let in2 = 76; let out = 88; let f0 = gen_fp6(); let f1 = gen_fp6(); let initial_offset = KERNEL.global_labels["test_mul_fp12"]; let initial_stack: Vec = make_initial_stack(in1, in2, out, f0, f1, f0, f1); let final_stack: Vec = run_interpreter(initial_offset, initial_stack)? .stack() .to_vec(); let mut output: Vec = mul_fp12([f0, f1], [f0, f1]) .into_iter() .flatten() .flatten() .collect(); output.extend(vec![out]); let expected = as_stack(output); assert_eq!(final_stack, expected); Ok(()) }