use rayon::prelude::*; use serde::{Deserialize, Serialize}; use crate::field::extension_field::target::ExtensionTarget; use crate::field::extension_field::Extendable; use crate::field::field_types::RichField; use crate::fri::commitment::PolynomialBatchCommitment; use crate::fri::proof::{FriProof, FriProofTarget}; use crate::hash::hash_types::MerkleCapTarget; use crate::hash::merkle_tree::MerkleCap; use crate::iop::target::Target; use crate::plonk::circuit_data::CommonCircuitData; #[derive(Serialize, Deserialize, Clone, Debug, Eq, PartialEq)] #[serde(bound = "")] pub struct Proof, const D: usize> { /// Merkle cap of LDEs of wire values. pub wires_cap: MerkleCap, /// Merkle cap of LDEs of Z, in the context of Plonk's permutation argument. pub plonk_zs_partial_products_cap: MerkleCap, /// Merkle cap of LDEs of the quotient polynomial components. pub quotient_polys_cap: MerkleCap, /// Purported values of each polynomial at the challenge point. pub openings: OpeningSet, /// A batch FRI argument for all openings. pub opening_proof: FriProof, } pub struct ProofTarget { pub wires_cap: MerkleCapTarget, pub plonk_zs_partial_products_cap: MerkleCapTarget, pub quotient_polys_cap: MerkleCapTarget, pub openings: OpeningSetTarget, pub opening_proof: FriProofTarget, } impl, const D: usize> Proof { /// Returns `true` iff the opening proof is compressed. pub fn is_compressed(&self) -> bool { self.opening_proof.is_compressed } /// Compress the opening proof. pub fn compress(mut self, common_data: &CommonCircuitData) -> Self { self.opening_proof = self.opening_proof.compress(common_data); self } /// Decompress the opening proof. pub fn decompress(mut self, common_data: &CommonCircuitData) -> Self { self.opening_proof = self.opening_proof.decompress(common_data); self } } #[derive(Serialize, Deserialize, Clone, Debug, Eq, PartialEq)] #[serde(bound = "")] pub struct ProofWithPublicInputs, const D: usize> { pub proof: Proof, pub public_inputs: Vec, } pub struct ProofWithPublicInputsTarget { pub proof: ProofTarget, pub public_inputs: Vec, } impl, const D: usize> ProofWithPublicInputs { /// Returns `true` iff the opening proof is compressed. pub fn is_compressed(&self) -> bool { self.proof.is_compressed() } /// Compress the opening proof. pub fn compress(mut self, common_data: &CommonCircuitData) -> Self { self.proof = self.proof.compress(common_data); self } /// Decompress the opening proof. pub fn decompress(mut self, common_data: &CommonCircuitData) -> Self { self.proof = self.proof.decompress(common_data); self } } #[derive(Clone, Debug, Serialize, Deserialize, Eq, PartialEq)] /// The purported values of each polynomial at a single point. pub struct OpeningSet, const D: usize> { pub constants: Vec, pub plonk_sigmas: Vec, pub wires: Vec, pub plonk_zs: Vec, pub plonk_zs_right: Vec, pub partial_products: Vec, pub quotient_polys: Vec, } impl, const D: usize> OpeningSet { pub fn new( z: F::Extension, g: F::Extension, constants_sigmas_commitment: &PolynomialBatchCommitment, wires_commitment: &PolynomialBatchCommitment, zs_partial_products_commitment: &PolynomialBatchCommitment, quotient_polys_commitment: &PolynomialBatchCommitment, common_data: &CommonCircuitData, ) -> Self { let eval_commitment = |z: F::Extension, c: &PolynomialBatchCommitment| { c.polynomials .par_iter() .map(|p| p.to_extension().eval(z)) .collect::>() }; let constants_sigmas_eval = eval_commitment(z, constants_sigmas_commitment); let zs_partial_products_eval = eval_commitment(z, zs_partial_products_commitment); Self { constants: constants_sigmas_eval[common_data.constants_range()].to_vec(), plonk_sigmas: constants_sigmas_eval[common_data.sigmas_range()].to_vec(), wires: eval_commitment(z, wires_commitment), plonk_zs: zs_partial_products_eval[common_data.zs_range()].to_vec(), plonk_zs_right: eval_commitment(g * z, zs_partial_products_commitment) [common_data.zs_range()] .to_vec(), partial_products: zs_partial_products_eval[common_data.partial_products_range()] .to_vec(), quotient_polys: eval_commitment(z, quotient_polys_commitment), } } } /// The purported values of each polynomial at a single point. #[derive(Clone, Debug)] pub struct OpeningSetTarget { pub constants: Vec>, pub plonk_sigmas: Vec>, pub wires: Vec>, pub plonk_zs: Vec>, pub plonk_zs_right: Vec>, pub partial_products: Vec>, pub quotient_polys: Vec>, } #[cfg(test)] mod tests { use anyhow::Result; use crate::field::crandall_field::CrandallField; use crate::field::extension_field::algebra::ExtensionAlgebra; use crate::field::extension_field::quartic::QuarticExtension; use crate::field::field_types::Field; use crate::iop::witness::PartialWitness; use crate::plonk::circuit_builder::CircuitBuilder; use crate::plonk::circuit_data::CircuitConfig; use crate::plonk::verifier::verify; #[test] fn test_proof_compression() -> Result<()> { type F = CrandallField; type FF = QuarticExtension; const D: usize = 4; let config = CircuitConfig::large_config(); let pw = PartialWitness::new(); let mut builder = CircuitBuilder::::new(config); // Build dummy circuit to get a valid proof. let x = F::rand(); let y = F::rand(); let z = x * y; let xt = builder.constant(x); let yt = builder.constant(y); let zt = builder.constant(z); let comp_zt = builder.mul(xt, yt); builder.connect(zt, comp_zt); let data = builder.build(); let proof = data.prove(pw)?; // Verify that `decompress ∘ compress = identity`. let compressed_proof = proof.clone().compress(&data.common); let decompressed_compressed_proof = compressed_proof.clone().decompress(&data.common); assert_eq!(proof, decompressed_compressed_proof); verify(proof, &data.verifier_only, &data.common)?; verify(compressed_proof, &data.verifier_only, &data.common) } }