The Polygon Zero zkEVM

DRAFT
November 24, 2023

Abstract
We describe the design of Polygon Zero’s zkEVM, ...

Contents

1 Introduction

2 STARK framework

2.1 Cost model
2.2 Field selection
2.3 Cross-table lookups
2.4 Range-checks
2.4.1 What to range-check?
2.4.2 Lookup Argument . .
2.4.3 Constraints
3 Tables
3.1 CPU
3.1.1 CPUflow
3.1.2 CPU columns
3.2 Arithmetic
3.2.1 Auxiliary columns . . .
3.3 Byte Packing
3.4 Logic.
3.5 Memory
3.5.1 Virtual memory
3.5.2 Timestamps
3.6 Keccak-f
3.6.1 Keccak-f Permutation
3.6.2 Columns
3.6.3 Constraints
3.7 KeccakSponge
4 Merkle Patricia Tries
4.1 Internal memory format . . .
4.1.1 State trie
4.1.2 Transaction Trie . . .
4.1.3 Receipt Trie
4.2 Prover input format
4.3 Encoding and Hashing

=~

O~ O O U

5 CPU logic 30

5.1
5.2
5.3
5.4

5.5

5.6

Kernel 30
Simple opcodes VS Syscalls 33
Privileged instructionso 33
Stack handling oL 35
54.1 Topofthestack. 35
5.4.2 Stack length checking 37
Gas handling 38
5.5.1 Outofgaserrors 38
552 Overflow L 39
Exceptions 39

1 Introduction

TODO

2 STARK framework

2.1 Cost model

Our zkEVM is designed for efficient verification by STARKSs [1], particularly
by an AIR with degree 3 constraints. In this model, the prover bottleneck is
typically constructing Merkle trees, particularly constructing the tree contain-
ing low-degree extensions of witness polynomials.

2.2 Field selection

Our zkEVM is designed to have its execution traces encoded in a particular
prime field F,, with p = 2% — 232 + 1. A nice property of this field is that
it can represent the results of many common u32 operations. For example,
(widening) u32 multiplication has a maximum value of (232 —1)?, which is less
than p. In fact a u32 multiply-add has a maximum value of p— 1, so the result
can be represented with a single field element, although if we were to add a
carry in bit, this no longer holds.
This field also enables a very efficient reduction method. Observe that

204 =2% 1 (mod p)
and consequently

290 =222 — 1) (mod p)
264 . 232

=—1 (mod p).

(mod p)

To reduce a 128-bit number n, we first rewrite n as ng + 2%4n; + 2%n,, where
ng is 64 bits and nq,ny are 32 bits each. Then

n =ng+ 2%n; +2%ny (mod p)
=no+ (22 = 1)n; —ny (mod p)
After computing (232 — 1)ny, which can be done with a shift and subtraction,

we add the first two terms, subtracting p if overflow occurs. We then subtract
ng, adding p if underflow occurs.

At this point we have reduced n to a u64. This partial reduction is adequate
for most purposes, but if we needed the result in canonical form, we would
perform a final conditional subtraction.

2.3 Cross-table lookups

The various STARK tables carry out independent operations, but on shared
values. We need to check that the shared values are identical in all the STARKSs
that require them. This is where cross-table lookups (CTLs) come in handy.

Suppose STARK Sy requires an operation — say Op — that is carried out
by another STARK S5. Then S; writes the input and output of Op in its own
table, and provides the inputs to S;. Sy also writes the inputs and outputs in
its rows, and the table’s constraints check that Op is carried out correctly. We
then need to ensure that the inputs and outputs are the same in S; and Ss.

In other words, we need to ensure that the rows — reduced to the input
and output columns — of S; calling Op are permutations of the rows of Sy that
carry out Op.

To prove this, the first step is to only select the rows of interest in S; and
Sy, and filter out the rest. Let f! be the filter for S; and f? the filter for S,.
f! and f? are constrained to be in {0,1}. f! = 1 (resp. f? = 1) whenever
the row at hand carries out Op in S; (resp. in Ss), and 0 otherwise. Let also
(e, B) be two random challenges.

The idea is to create subtables S} and 5% of S; and S, respectively, such
that f! = 1 and f? = 1 for all their rows. The columns in the subtables are
limited to the ones whose values must be identical (the inputs and outputs of
Op in our example).

Let {c"'}™ | be the columns in S} an {c¢*'}™, be the columns in Sj.

The prover defines a “running product” Z for S} such that:

Z =1

m—1
28 =28 (i (o7 e+ 8) + (1=)
j=0

The second equation “selects” the terms of interest thanks to f! and filters
out the rest.

Similarly, the prover constructs a running product Z%2for S,. Note that Z
is computed “upside down”: we start with Z,,_; = 1 and the final product is
in Z().

On top of the constraints to check that the running products were correctly
constructed, the verifier checks that Z5" = Z52. This ensures that the columns
in S| and the columns in S} are permutations of each other.

To sum up, for each STARK S, the prover:

1. constructs a running product P! for each table looking into S (called
looking products here),

2. constructs a running product P for S (called looked product here),
3. sends the final value for each running product P}, and P} to the verifier,
4. sends a commitment to P} and P* to the verifier.
Then, for each STARK S, the verifier:
1. computes the product P =[], Pz‘l,07
2. checks that P = Py,

3. checks that each P! and P was correctly constructed.

2.4 Range-checks

In most cases, tables deal with U256 words, split into 32-bit limbs (to avoid
overflowing the field). To prevent a malicious prover from cheating, it is crucial
to range-check those limbs.

2.4.1 What to range-check?

One can note that every element that ever appears on the stack has been
pushed. Therefore, enforcing a range-check on pushed elements is enough to
range-check all elements on the stack. Similarly, all elements in memory must
have been written prior, and therefore it is enough to range-check memory
writes. However, range-checking the PUSH and MSTORE opcodes is not
sufficient.

1. Pushes and memory writes for “MSTORE_32BYTES” are range-checked
in “BytePackingStark”.

2. Syscalls, exceptions and prover inputs are range-checked in “Arithmetic-
Stark”.

The inputs and outputs of binary and ternary arithmetic operations are
range-checked in “ArithmeticStark”.

The inputs’ bits of logic operations are checked to be either 1 or 0 in
“LogicStark”. Since “LogicStark” only deals with bitwise operations,
this is enough to have range-checked outputs as well.

The inputs of Keccak operations are range-checked in “KeccakStark”.
The output digest is written as bytes in “KeccakStark”. Those bytes are
used to reconstruct the associated 32-bit limbs checked against the limbs
in “CpuStark”. This implictly ensures that the output is range-checked.

Note that some operations do not require a range-check:

1.

“MSTORE_GENERAL” read the value to write from the stack. Thus,
the written value was already range-checked by a previous push.

“EQ” reads two — already range-checked — elements on the stack, and
checks they are equal. The output is either 0 or 1, and does therefore
not need to be checked.

“NOT” reads one — already range-checked — element. The result is con-
strained to be equal to OxFFFFFFFF — input, which implicitly enforces
the range check.

“PC”: the program counter cannot be greater than 23? in user mode.
Indeed, the user code cannot be longer than 232, and jumps are con-
strainted to be JUMPDESTSs. Moreover, in kernel mode, every jump is
towards a location within the kernel, and the kernel code is smaller than
232 These two points implicitly enforce PC’s range check.

“GET_CONTEXT”, “DUP” and “SWAP” all read and push values that
were already written in memory. The pushed values were therefore al-
ready range-checked.

Range-checks are performed on the range [0, 2'® — 1], to limit the trace length.

2.4.2 Lookup Argument

To enforce the range-checks, we leverage logUp, a lookup argument by Ul-
rich Hédbock. Given a looking table s = (si,...,s,) and a looked table t =

(th, ...

,tm), the goal is to prove that

V1<i¢<n,d1 <j<r such that s, =1;

7

https://eprint.iacr.org/2022/1530.pdf

In our case, t = (0,..,2' — 1) and s is composed of all the columns in each
STARK that must be range-checked.

The logUp paper explains that proving the previous assertion is actually
equivalent to proving that there exists a sequence [such that:

n

1 ~
ZX—SZ:ZXit]

i—1 j=1

The values of s can be stored in ¢ different columns of length n each. In
that case, the equality becomes:

C n 1 T l
sz—sfzzxitj

k=1 i=1 j=1

The ‘multiplicity’ m; of value t; is defined as the number of times ¢; appears
in s. In other words:
m; = |sj € s;8; =t

Multiplicities provide a valid sequence of values in the previously stated
equation. Thus, if we store the multiplicities, and are provided with a challenge
a, we can prove the lookup argument by ensuring:

r

C n 1)
2D DD I

k=1 =1

However, the equation is too high degree. To circumvent this issue, Habock
suggests providing helper columns h; and d such that at a given row ¢:

hE —

7

Vi<k<c

k

i

a-+ s
1
z_OZ—f-ti

The h helper columns can be batched together to save columns. We can
batch at most contraint_degree — 1 helper functions together. In our case,
we batch them 2 by 2. At row i, we now have:

1 1

o+ S; a+32k+1V1§k§C/2

If ¢ is odd, then we have one extra helper column:

pe/2H _ 1
' o+ s§

For clarity, we will assume that c is even in what follows.

Let g be a generator of a subgroup of order n. We extrapolate h, m and
d to get polynomials such that, for f € {h¥,m,g}: f(¢') = f;. We can define
the following polynomial:

n 6/2

Z(x) =Y [h*(x) - m(x) = d(z)]

i=1

2.4.3 Constraints

With these definitions and a challenge a, we can finally check that the assertion
holds with the following constraints:

Z(1) =0
c/2

Z(ga) = Z(a) + Y h¥(a) = m(a)d()
k=1
These ensure that We also need to ensure that h* is well constructed for all
1<k<c¢/2:
h(“)k (a4 s9k) - (0 + sop41) = (a4 Sax) + (o + Sop1)

Note: if ¢ is odd, we have one unbatched helper column A%?*! for which
we need a last constraint:

h(a) . (a+s,) =1

Finally, the verifier needs to ensure that the table ¢ was also correctly
computed. In each STARK, ¢ is computed starting from 0 and adding at most
1 at each row. This construction is constrained as follows:

1. (1) =0
2. (t(g™h) = t(g") - ((t(g"*") —t(g")) —1) =0

3. t(gm)y =26 -1

3 Tables

3.1 CPU

The CPU is the central component of the zkEVM. Like any CPU, it reads
instructions, executes them and modifies the state (registers and the memory)
accordingly. The constraining of some complex instructions (e.g. Keccak
hashing) is delegated to other tables. This section will only briefly present
the CPU and its columns. Details about the CPU logic will be provided later.

3.1.1 CPU flow

An execution run can be decomposed into three distinct parts:

e Bootstrapping: The CPU starts by writing all the kernel code to mem-
ory and then hashes it. The hash is then compared to a public value
shared with the verifier to ensure that the kernel code is correct.

e CPU cycles: The bulk of the execution. In each row, the CPU reads the
current code at the program counter (PC) address, and executes it. The
current code can be the kernel code, or whichever code is being executed
in the current context (transaction code or contract code). Executing an
instruction consists in modifying the registers, possibly performing some
memory operations, and updating the PC.

e Padding: At the end of the execution, we need to pad the length of the
CPU trace to the next power of two. When the program counter reaches
the special halting label in the kernel, execution halts. Constraints en-
sure that every subsequent row is a padding row and that execution
cannot resume.

In the CPU cycles phase, the CPU can switch between different contexts,
which correspond to the different environments of the possible calls. Context 0
is the kernel itself, which handles initialization (input processing, transaction
parsing, transaction trie updating...) and termination (receipt creation, final
trie checks...) before and after executing the transaction. Subsequent contexts
are created when executing user code (transaction or contract code). In a non-
zero user context, syscalls may be executed, which are specific instructions
written in the kernel. They don’t change the context but change the code
context, which is where the instructions are read from.

10

3.1.2 CPU columns

Registers:

is_bootstrap_kernel: Boolean indicating whether this is a bootstrap-
ping row or not. It must be 1 at the first row, then switch to 0 until the
end.

context: Indicates which context we are in. 0 for the kernel, and a
positive integer for every user context. Incremented by 1 at every call.

code_context: Indicates in which context the code to execute resides.
It’s equal to context in user mode, but is always 0 in kernel mode.

program counter: The address of the instruction to be read and exe-
cuted.

stack_len: The current length of the stack.

stack len bounds_ aux: Helper column used to check that the stack
doesn’t overflow in user mode.

is kernel mode: Boolean indicating whether we are in kernel (i.e. priv-
ileged) mode. This means we are executing kernel code, and we have
access to privileged instructions.

gas: The current amount of gas used in the current context. It is even-
tually checked to be below the current gas limit. Must fit in 32 bits.

is_keccak_sponge: Boolean indicating whether we are executing a Kec-
cak hash. This happens whenever a KECCAK_GENERAL instruction is exe-
cuted, or at the last cycle of bootstrapping to hash the kernel code.

clock: Monotonic counter which starts at 0 and is incremented by 1 at
each row. Used to enforce correct ordering of memory accesses.

opcode_bits: 8 boolean columns, which are the bit decomposition of
the opcode being read at the current PC.

Operation flags: Boolean flags. During CPU cycles phase, each row exe-
cutes a single instruction, which sets one and only one operation flag. No flag
is set during bootstrapping and padding. The decoding constraints ensure that
the flag set corresponds to the opcode being read. There isn’t a 1-to-1 cor-
respondance between instructions and flags. For efficiency, the same flag can

11

be set by different, unrelated instructions (e.g. eq-iszero, which represents
the EQ and the ISZERO instructions). When there is a need to differentiate
them in constraints, we filter them with their respective opcode: since the
first bit of EQ’s opcode (resp. ISZERO’s opcode) is 0 (resp. 1), we can filter
a constraint for an EQ instruction with eq_iszero * (1 - opcode_bits[0])
(resp. eq-iszero * opcode bits[0]).

Memory columns: The CPU interacts with the EVM memory via its mem-
ory channels. At each row, a memory channel can execute a write, a read, or
be disabled. A full memory channel is composed of:

e used: Boolean flag. If it’s set to 1, a memory operation is executed in
this channel at this row. If it’s set to 0, no operation is done but its
columns might be reused for other purposes.

e is_read: Boolean flag indicating if a memory operation is a read or a
write.

e 3 address columns. A memory address is made of three parts: context,
segment and virtual.

e 8 value columns. EVM words are 256 bits long, and they are broken
down in 8 32-bit limbs.

The last memory channel is a partial channel: it doesn’t have its own value
columns and shares them with the first full memory channel. This allows us
to save eight columns.

General columns: There are 8 shared general columns. Depending on the
instruction, they are used differently:

e Exceptions: When raising an exception, the first three general columns
are the bit decomposition of the exception code. They are used to jump
to the correct exception handler.

e Logic: For EQ, and ISZERO operations, it’s easy to check that the result
is 1 if inputO and inputl are equal. It’s more difficult to prove that, if
the result is 0, the inputs are actually unequal. To prove it, each general
column contains the modular inverse of (input0,—input1,) for each limb
i (or 0 if the limbs are equal). Then the quantity general, x (inputO, —
inputl,) will be 1 if and only if general, is indeed the modular inverse,
which is only possible if the difference is non-zero.

12

3.2

Jumps: For jumps, we use the first two columns: should_jump and
cond_sum pinv. should_jump conditions whether the EVM should jump:
it’s 1 for a JUMP, and condition # 0 for a JUMPI. To check if the
condition is actually non-zero for a JUMPI, cond_sum pinv stores the
modular inverse of condition (or 0 if it’s zero).

Shift: For shifts, the logic differs depending on whether the displace-
ment is lower than 232, i.e. if it fits in a single value limb. To check if this
is not the case, we must check that at least one of the seven high limbs
is not zero. The general column high 1imb_sum inv holds the modular
inverse of the sum of the seven high limbs, and is used to check it’s non-
zero like the previous cases. Contrary to the logic operations, we do not
need to check limbs individually: each limb has been range-checked to
32 bits, meaning that it’s not possible for the sum to overflow and be
zero if some of the limbs are non-zero.

Stack: The last three columns are used by popping-only (resp. pushing-
only) instructions to check if the stack is empty after (resp. was empty
before) the instruction. We use the last columns to prevent conflicts
with the other general columns. More details are provided in the stack
handling section.

Arithmetic

Each row of the arithmetic table corresponds to a binary or ternary arithmetic
operation. Each of these operations has an associated flag f,, in the table, such
that f,, = 1 whenever the operation is op and 0 otherwise. The full list of
operations carried out by the table is as follows:

Binary operations:

basic operations: “add”, “mul”, “sub” and “div”,

comparisons: “It” and “gt”,

shifts: “shr” and “shl”,

“byte”: given xy, xy, returns the z;-th “byte” in xs,

modular operations: “mod”, “AddFp254”, “MulFp254” and “SubFp254”,

range-check: no operation is performed, as this is only used to range-
check the input and output limbs in the range [0,2'6 — 1].

13

For ‘mod’, the second input is the modulus. “AddFp254”, “MulFp254” and
“SubFp254” are modular operations modulo “Fp254’ — the prime for the BN
curve’s base field.

Ternary operations: There are three ternary operations: modular addi-
tion “AddMod”, modular multiplication “MulMod” and modular subtraction
“SubMod”.

Besides the flags, the arithmetic table needs to store the inputs, output and
some auxiliary values necessary to constraints. The input and output values
are range-checked to ensure their canonical representation. Inputs are 256-bits
words. To avoid having too large a range-check, inputs are therefore split into
sixteen 16-bits limbs, and range-checked in the range [0, 26 — 1].

Overall, the table comprises the following columns:

e 17 columns for the operation flags f,,

e 1 column op containing the opcode,

16 columns for the 16-bit limbs z(; of the first input z,

16 columns for the 16-bit limbs z; ; of the second input xz;,

16 columns for the 16-bit limbs x5 ; of the third input x5,

16 columns for the 16-bit limbs r; of the output r,

32 columns for auxiliary values aux;,

1 column range counter containing values in the range [0, 2! — 1], for
the range-check,

1 column storing the frequency of appearance of each value in the range
0,216 —1].

Note on op: The opcode column is only used for range-checks. For opti-
mization purposes, we check all arithmetic operations against the cpu table
together. To ensure correctness, we also check that the operation’s opcode
corresponds to its behavior. But range-check is not associated to a unique op-
eration: any operation in the cpu table might require its values to be checked.
Thus, the arithmetic table cannot know its opcode in advance: it needs to
store the value provided by the cpu table.

14

3.2.1 Auxiliary columns

The way auxiliary values are leveraged to efficiently check correctness is not
trivial, but it is explained in detail in each dedicated file. Overall, five files
explain the implementations of the various checks. Refer to:

1. “mul.rs” for details on multiplications.
2. “addcy.rs” for details on addition, subtraction, “It” and “gt”.

3. “modular.rs” for details on how modular operations are checked. Note
that even though “div” and “mod” are generated and checked in a sep-
arate file, they leverage the logic for modular operations described in
“modular.rs”.

4. “byte” for details on how “byte” is checked.

5. “shift.rs” for details on how shifts are checked.

Note on “It” and “gt”: For “It” and “gt”, auxiliary columns hold the
difference d between the two inputs x1,z5. We can then treat them similarly
to subtractions by ensuring that 1 — zo = d for “It” and z9 —x; = d for “gt”.
An auxiliary column cy is used for the carry in additions and subtractions. In
the comparisons case, it holds the overflow flag. Contrary to subtractions, the
output of “It” and “gt” operations is not d but cy.

Note on “div”: It might be unclear why “div”’ and “mod” are dealt with
in the same file.

Given numerator and denominator n, d, we compute, like for other modular
operations, the quotient ¢ and remainder rem:

div(zy,xe) = q * T9 + Tem

. We then set the associated auxiliary columns to rem and the output to q.

This is why “div” is essentially a modulo operation, and can be addressed
in almost the same way as “mod”. The only difference is that in the “mod”
case, the output is rem and the auxiliary value is q.

Note on shifts: “shr” and “shl” are internally constrained as “div” and
“mul” respectively with shifted operands. Indeed, given inputs s, z, the output
should be x >> s for “shr” (resp. x << s for “shl”). Since shifts are binary
operations, we can use the third input columns to store Sghifreqa = 1 << s.
Then, we can use the “div” logic (resp. “mul” logic) to ensure that the output

£— (resp. T * Sshifted)-

Sshifted

15

3.3 Byte Packing

The BytePacking STARK module is used for reading and writing non-empty
byte sequences of length at most 32 to memory. The ”packing” term highlights
that reading a sequence in memory will pack the bytes into an EVM word (i.e.
U256), while the "unpacking” operation consists in breaking down an EVM
word into its byte sequence and writing it to memory.

This allows faster memory copies between two memory locations, as well
as faster memory reset (see memcpy.asm and memset.asm modules).

The ‘BytePackingStark’ table will have ¢ rows per packing/unpacking op-
eration, where 0 < ¢ < 32 is the length of the sequence being processed.

Each row contains the following columns:

1. 5 columns containing information on the initial memory address from
which the sequence starts (namely a flag differentiating read and write
operations, address context, segment and offset values, as well as times-
tamp),

2. fena, a flag indicating the end of a sequence,

3. 32 columns b; indicating the index of the byte being read/written at a
given row,

4. 32 columns v; indicating the values of the bytes that have been read or
written during a sequence,

5. 2 columns r; needed for range-checking the byte values.

Notes on columns generation: Whenever a byte unpacking operation is
called, the value val is read from the stack, but because the EVM and the
STARKSs use different endianness, we need to convert val to a little-endian
byte sequence. Only then do we resize it to the appropriate length, and prune
extra zeros and higher bytes in the process. Finally, we reverse the byte order
and write this new sequence into the v; columns of the table.

Whenever the operation is a byte packing, the bytes are read one by one
from memory and stored in the v; columns of the BytePackingStark table.

Note that because of the different endianness on the memory and EVM
sides, we generate rows starting with the final virtual address value (and the
associated byte). We decrement the address at each row.

The b; columns hold a boolean value. b; = 1 whenever we are currently
reading or writing the i-th element in the byte sequence. b; = 0 otherwise.

16

https://github.com/0xPolygonZero/plonky2/blob/main/evm/src/cpu/kernel/asm/memory/memcpy.asm
https://github.com/0xPolygonZero/plonky2/blob/main/evm/src/cpu/kernel/asm/memory/memset.asm

Cross-table lookups: The read or written bytes need to be checked against
both the cpu and the memory tables. Whenever we call MSTORE_32BYTES,
MLOAD_32BYTES or PUSH on the cpu side, we make use of ‘BytePackingStark’
to make sure we are carrying out the correct operation on the correct values.
For this, we check that the following values correspond:

1. the address (comprising the context, the segment, and the virtual ad-
dress),

2. the length of the byte sequence,
3. the timestamp,
4. the value (either written to or read from the stack)

On the other hand, we need to make sure that the read and write operations
correspond to the values read or stored on the memory side. We therefore
need a CTL for each byte, checking that the following values are identical in
‘MemoryStark’ and ‘BytePackingStark’:

1. a flag indicating whether the operation is a read or a write,
2. the address (context, segment and virtual address),

3. the byte (followed by 0s to make sure the memory address contains a
byte and not a U256 word),

4. the timestamp

Note on range-check: Range-checking is necessary whenever we do a mem-
ory unpacking operation that will write values to memory. These values are
constrained by the range-check to be 8-bit values, i.e. fitting between 0 and
255 included. While range-checking values read from memory is not necessary,
because we use the same byte_values columns for both read and write oper-
ations, this extra condition is enforced throughout the whole trace regardless
of the operation type.

3.4 Logic

Each row of the logic table corresponds to one bitwise logic operation: either
AND, OR or XOR. Each input for these operations is represented as 256 bits,
while the output is stored as eight 32-bit limbs.

Each row therefore contains the following columns:

17

1. fana, an “is and” flag, which should be 1 for an OR operation and 0
otherwise,

2. for, an “is or” flag, which should be 1 for an OR operation and 0 other-
wise,

3. fxor, an “is xor” flag, which should be 1 for a XOR operation and 0
otherwise,

4. 256 columns x;; for the bits of the first input x4,
5. 256 columns wy; for the bits of the second input x,
6. 8 columns r; for the 32-bit limbs of the output r.

Note that we need all three flags because we need to be able to distinguish
between an operation row and a padding row — where all flags are set to 0.

The subdivision into bits is required for the two inputs as the table carries
out bitwise operations. The result, on the other hand, is represented in 32-bit
limbs since we do not need individual bits and can therefore save the remaining
248 columns. Moreover, the output is checked against the cpu, which stores
values in the same way.

3.5 Memory

For simplicity, let’s treat addresses and values as individual field elements.
The generalization to multi-element addresses and values is straightforward.

Each row of the memory table corresponds to a single memory operation
(a read or a write), and contains the following columns:

1. a, the target address
2. r, an “is read” flag, which should be 1 for a read or 0 for a write
3. v, the value being read or written

4. 7, the timestamp of the operation

The memory table should be ordered by (a, 7). Note that the correctness of
the memory could be checked as follows:

1. Verify the ordering by checking that (a;, 7;) < (a;41,7;41) for each con-
secutive pair.

18

2. Enumerate the purportedly-ordered log while tracking the “current”
value of v, which is initially zero.!

(a) Upon observing an address which doesn’t match that of the previous
row, if the operation is a read, check that v = 0.

(b) Upon observing a write, don’t constrain v.

(c) Upon observing a read at timestamp 7; which isn’t the first opera-
tion at this address, check that v; = v;_1.

The ordering check is slightly involved since we are comparing multiple
columns. To facilitate this, we add an additional column e, where the prover
can indicate whether two consecutive addresses changed. An honest prover

will set
. { 1I a ((7E%]

0 otherwise.

We also introduce a range-check column ¢, which should hold:

CLZ‘+1—CLZ'—]. 1fez:1
Ci < . ’
Tiv1 — T otherwise.

The extra —1 ensures that the address actually changed if e; = 1. We then
impose the following transition constraints:

1. 6@'(61' - 1) = 0,
2. (1 — ei)(aiﬂ I CL,‘) == 0,
3. ¢ < 232,

The last constraint emulates a comparison between two addresses or times-
tamps by bounding their difference; this assumes that all addresses and times-
tamps fit in 32 bits and that the field is larger than that.

3.5.1 Virtual memory

In the EVM, each contract call has its own address space. Within that address
space, there are separate segments for code, main memory, stack memory,
calldata, and returndata. Thus each address actually has three compoments:

1. an execution context, representing a contract call,

'EVM memory is zero-initialized.

19

2. a segment ID, used to separate code, main memory, and so forth, and so
on

3. a virtual address.

The comparisons now involve several columns, which requires some minor
adaptations to the technique described above; we will leave these as an exercise
to the reader.

3.5.2 Timestamps

Memory operations are sorted by address a and timestamp 7. For a memory
operation in the CPU, we have:

7 = NUM_CHANNELS X cycle + channel.

Since a memory channel can only hold at most one memory operation, every
CPU memory operation’s timestamp is unique.

Note that it doesn’t mean that all memory operations have unique times-
tamps. There are two exceptions:

e Before bootstrapping, we write some global metadata in memory. These
extra operations are done at timestamp 7 = 0.

e Some tables other than CPU can generate memory operations, like Kec-
cakSponge. When this happens, these operations all have the timestamp
of the CPU row of the instruction which invoked the table (for Keccak-
Sponge, KECCAK_GENERAL).

3.6 Keccak-f
This table computes the Keccak-f[1600] permutation.

3.6.1 Keccak-f Permutation

To explain how this table is structured, we first need to detail how the permu-
tation is computed. This page gives a pseudo-code for the permutation. Our
implementation differs slightly — but remains equivalent — for optimization and
constraint degree reasons.

Let:

e S be the sponge width (S = 25 in our case)

20

https://keccak.team/keccak_specs_summary.html

e NUM_ROUNDS be the number of Keccak rounds (NUM_ROUNDS = 24)
e RC' a vector of round constants of size NUM_ROUNDS
e] be the input of the permutation, comprised of S 64-bit elements

The first step is to reshape [into a 5 x 5 matrix. We initialize the state A
of the sponge with I:

Alx,y] .= I[x,y] Va,y € {0..4}

We store A in the table, and subdivide each 64-bit element into two 32-bit
limbs. Then, for each round ¢, we proceed as follows:

1. First, we define C[z] := xor} jA[z,i]. We store C' as bits in the table.
This is because we need to apply a rotation on its elements’ bits and
carry out xor operations in the next step.

2. Then, we store a second vector C’ in bits, such that:

C'lz,z] = Clz, 2] xor Clx —1,2] xor Clz+ 1,2 —1]

3. We then need to store the updated value of A:
Allz,y] = Alz,y] xor Clz,y] xor C'[z,y]

Note that this is equivalent to the equation in the official Keccak-f de-
scription:

A'lx,y] = Alx,y] xor Clz —1,2] xor Clz+ 1,2z —1]

4. The previous three points correspond to the 6 step in Keccak-f. We can
now move on to the p and 7 steps. These steps are written as:

Bly,2 x x4+ 3 x y] := rot(A'[z,y], r[z,y])

where rot (a, s) is the bitwise cyclic shift operation, and r is the matrix
of rotation offsets. We do not need to store B: B’s bits are only a
permutation of A”’s bits.

21

5. The x step updates the state once again, and we store the new values:
A"z, y] == Blz,y] xor (not B[z + 1,y|] and B[z + 2,y|)

Because of the way we carry out constraints (as explained below), we
do not need to store the individual bits for A”: we only need the 32-bit
limbs.

6. The final step, ¢, consists in updating the first element of the state as

follows:
A”’[0,0] = A"[0,0] xor RCYi]

where
A"z, y] = A"z, y]¥(2,y) # (0,0)

Since only the first element is updated, we only need to store A0, 0]
of this updated state. The remaining elements are fetched from A”.
However, because of the bitwise xor operation, we do need columns for
the bits of A”[0, 0].

Note that all permutation elements are 64-bit long. But they are stored as
32-bit limbs so that we do not overflow the field.

It is also important to note that all bitwise logic operations (xor , not
and and) are checked in this table. This is why we need to store the bits of
most elements. The logic table can only carry out eight 32-bit logic operations
per row. Thus, leveraging it here would drastically increase the number of
logic rows, and incur too much overhead in proving time.

3.6.2 Columns

Using the notations from the previous section, we can now list the columns in
the table:

1. NUM_ROUNDS = 24 columns ¢; to determine which round is currently being
computed. ¢; = 1 when we are in the ¢-th round, and 0 otherwise. These
columns’ purpose is to ensure that the correct round constants are used
at each round.

2. 1 column t which stores the timestamp at which the Keccak operation
was called in the cpu. This column enables us to ensure that inputs
and outputs are consistent between the cpu, keccak-sponge and keccak-f
tables.

22

3. 5 x 5 x 2 = 50columns to store the elements of A. As a reminder, each
64-bit element is divided into two 32-bit limbs, and A comprises S = 25
elements.

4. 5 x 64 = 320 columns to store the bits of the vector C'.
5. 5 x 64 = 320 columns to store the bits of the vector C”.
6. 5x 5 x 64 = 1600 columns to store the bits of A’.

7. 5 x5 x 2 =50 columns to store the 32-bit limbs of A”.
8. 64 columns to store the bits of A”[0,0].

9. 2 columns to store the two limbs of A”'[0, 0].

In total, this table comprises 2,431 columns.

3.6.3 Constraints

Some constraints checking that the elements are computed correctly are not
straightforward. Let us detail them here.

First, it is important to highlight the fact that a xor between two elements
is of degree 2. Indeed, for xor y, the constraint is z +y — 2 X & X y, which is
of degree 2. This implies that a xor between 3 elements is of degree 3, which
is the maximal constraint degree for our STARKS.

We can check that C'[z, z] = C[z, 2] xor Clz —1,2] xor Clx + 1,z — 1].
However, we cannot directly check that C[z] = xor!_jAx,], as it would be a
degree 5 constraint. Instead, we use C” for this constraint. We see that:

xori_oA'lr,i, 2] = C'[z, 2]

This implies that the difference d = 3% A'[x, i, 2] — C'[x, 2] is either 0, 2 or
4. We can therefore enforce the following degree 3 constraint instead:

dx(d—2)x(d—4)=0
Additionally, we have to check that A’ is well constructed. We know that
A" should be such that A'[z,y, z] = Alx,y, z] xor Clz,z] xor C'[z,z]. Since
we do not have the bits of A elements but the bits of A’ elements, we check

the equivalent degree 3 constraint:

Alx,y, z] = A'[z,y, 2] xor Clz,z] xor C'[z, 2]

23

Finally, the constraints for the remaining elements, A” and A” are straight-
forward: A” is a three-element bitwise xor where all bits involved are already
storedn and A”'[0,0] is the output of a simple bitwise xor with a round con-
stant.

3.7 KeccakSponge

This table computes the Keccak256 hash, a sponge-based hash built on top of
the Keccak-f[1600] permutation. An instance of KeccakSponge takes as input
a Memory address a, a length [, and computes the Keccak256 digest of the
memory segment starting at a and of size [. An instance can span many rows,
each individual row being a single call to the Keccak table. Note that all the
read elements must be bytes; the proof will be unverifiable if this is not the
case. Following the Keccak specifications, the input string is padded to the
next multiple of 136 bytes. Each row contains the following columns:

e Read bytes:

— 3 address columns: context, segment and the offset virt of a.

— timestamp: the timestamp which will be used for all memory reads
of this instance.

— already_absorbed bytes: keeps track of how many bytes have
been hashed in the current instance. At the end of an instance,
we should have absorbed [bytes in total.

— KECCAK RATE BYTES block bytes columns: the bytes being absorbed
at this row. They are read from memory and will be XORed to the
rate part of the current state.

e Input columns:

— KECCAK_RATE_U32S original_rate_u32s columns: hold the rate
part of the state before XORing it with block_bytes. At the be-
ginning of an instance, they are initialized with 0.

— KECCAK RATE U32s xored rate u32s columns: hold the original
rate XORed with block bytes.

— KECCAK_CAPACITY_U32S original_capacity_-u32s columns: hold
the capacity part of the state before applying the Keccak permuta-
tion.

e Output columns:

24

— KECCAK_DIGEST BYTES updated_digest_state_bytes columns: the
beginning of the output state after applying the Keccak permuta-
tion. At the last row of an instance, they hold the computed hash.
They are decomposed in bytes for endianness reasons.

— KECCAK_WIDTH_MINUS DIGEST_U32S partial_updated_state_u32s columns:

the rest of the output state. They are discarded for the final digest,
but are used between instance rows.

e Helper columns:

— is_full_ input_block: indicates if the current row has a full input
block, i.e. block bytes contains only bytes read from memory and
no padding bytes.

— KECCAK _RATE BYTES is_final input_len columns: in the final row
of an instance, indicate where the final read byte is. If the i-th
column is set to 1, it means that all bytes after the i-th are padding
bytes. In a full input block, all columns are set to 0.

For each instance, constraints ensure that:
e at each row:
— is_full input block and is_final input_len columns are all bi-

nary.

— Only one column in is_full input_block and is_final input_len
is set to 1.

— xored_rate_u32s is original rate u32s XOR block _bytes.

— The CTL with Keccak ensures that (updated digest_state_bytes
columns, partial updated state_u32s) is the Keccak permuta-
tion output of (xored rate u32s, original capacity u32s).

e at the first row:

— original rate_u32s is all 0.

— already_absorbed_bytes is 0.

e at each full input row (i.e. is_full input blockis1,all is final input_len

columns are 0):

— context, segment, virt and timestamp are unchanged in the next
row.

25

— Next already_absorbed_bytes is current already_absorbed_bytes
+ KECCAK_RATE_BYTES.

— Next (original rate u32s, original capacity_u32s) is current
(updated_digest_state _bytes columns, partial updated_state_u32s).

— The CTL with Memory ensures that block bytes is filled with
contiguous memory elements [a + already_absorbed _bytes, a +
already_absorbed bytes + KECCAK_RATE BYTES - 1]

e at the final row (i.e. is_full input_block is 0, is_final input_len’s
i-th column is 1 for a certain 4, the rest are 0):

— The CTL with Memory ensures that block_bytes is filled with
contiguous memory elements [a + already absorbed bytes, a +
already_absorbed bytes + i - 1]. The rest are padding bytes.

— The CTL with CPU ensures that context, segment, virt and
timestamp match the KECCAK_GENERAL call.

— The CTL with CPU ensures that [= already_absorbed_bytes +
l.

— The CTL with CPU ensures that updated digest_state _bytes is
the output of the KECCAK_GENERAL call.

The trace is padded to the next power of two with dummy rows, whose
is_full input_block and is_final input_len columns are all 0.

4 Merkle Patricia Tries

The EVM World state is a representation of the different accounts at a particu-
lar time, as well as the last processed transactions together with their receipts.
The world state is represented using Merkle Patricia Tries (MPTs) [2, App. D],
and there are three different tries: the state trie, the transaction trie and the
receipt trie.

For each transaction we need to show that the prover knows preimages of
the hashed initial and final EVM states. At the onset of its execution, the
kernel stores these three tries within the Segment: :TrieData segment. The
prover loads the initial tries from the inputs into the memory. Subsequently,
the tries are modified during transaction execution, inserting new nodes or the
deleting of existing nodes.

A MPT is composed of five different nodes: branch, extension, leaf, empty
and digest nodes. Branch and leaf nodes might contain a payload whose

26

format depends on the particular trie. The nodes are encoded, primarily using
RLP encoding and Hex-prefix encoding (see [2] App. B and C, respectively).
The resulting encoding is then hashed, following a strategy similar to that of
normal Merkle trees, to generate the trie hashes.

Insertion and deletion is performed in the same way as other MPTs imple-
mentations, however we don’t modify the MPT in memory but create a new
one with the modifications. Below we describe the rest of MPT components.

4.1 Internal memory format

The tries are stored in the kernel memory, specifically in the Segment : TrieData
segment. Each node type is stored as

1. An empty node is encoded as (MPT_NODE_EMPTY).

2. A branch node is encoded as (MPT_NODE BRANCH, ¢y, ..., ci6,v), where
each ¢; is a pointer to a child node, and v is a pointer to a value. If
a branch node has no associated value, then v = 0, i.e. the null pointer.

3. An extension node is encoded as (MPT_NODE_EXTENSION, k,c), k repre-
sents the part of the key associated with this extension, and is encoded
as a 2-tuple (packed nibbles,num nibbles). ¢ is a pointer to a child
node.

4. A leaf node is encoded as (MPT_NODE_LEAF, k,v), where k is a 2-tuple as
above, and v is a pointer to a value.

5. A digest node is encoded as (MPT_NODE_HASH, d), where d is a Keccak256
digest.

On the other hand the values or payloads are represented differently de-
pending on the particular trie.

4.1.1 State trie

The state trie payload contains the account data. Each account is stored in 4
contiguous memory addresses containing

1. the nonce,
2. the balance,

3. a pointer to the account’s storage trie,

27

4. a hash of the account’s code.

The storage trie payload in turn is a single word.

4.1.2 Transaction Trie

The transaction trie nodes contain the length of the RLP encoded transaction,
followed by the bytes of the RLP encoding of the transaction.

4.1.3 Receipt Trie

The payload of the recipts trie is a receipt. Each receipt is stored as

—_

. the length in words of the payload,
2. the status,

3. the cumulative gas used,

4. the bloom filter, stored as 256 words.
5. the number of topics,

6. the topics

7. the data length,

8. the data.

4.2 Prover input format

The initial state of each trie is given by the prover as a nondeterministic input
tape. This tape has a slightly different format:

1. An empty node is encoded as (MPT_NODE_EMPTY).

2. A branch node is encoded as (MPT_NODE BRANCH, v, ¢1, ..., c16). Here v
consists of a flag indicating whether a value is present, followed by the
actual value payload if one is present. Each ¢; is the encoding of a child
node.

3. An extension node is encoded as (MPT_NODE_EXTENSION, k,c), k repre-
sents the part of the key associated with this extension, and is encoded
as a 2-tuple (packed nibbles,num nibbles). ¢ is a pointer to a child
node.

28

4. A leaf node is encoded as (MPT_NODE_LEAF, k,v), where k is a 2-tuple as
above, and v is a value payload.

5. A digest node is encoded as (MPT_NODE_HASH, d), where d is a Keccak256
digest.

Nodes are thus given in depth-first order, enabling natural recursive methods
for encoding and decoding this format. The payload of state and receipt tries
is given in the natural sequential way. The transaction an receipt payloads
contain variable size data, thus the input is slightly different. The prover
input for for the transactions is the transaction RLP encoding preceeded by
its lenght. For the receipts is in the natural sequential way, except that topics
and data are preceeded by their lengths, respectively.

4.3 Encoding and Hashing

Encoding is recursively performed starting from the trie root. Leaf, branch
and extension nodes are encoded as the RLP encoding of list containing the
hex prefix encoding of the node key as well as

Leaf Node: the encoding of the the payload,

Branch Node: the hash or encoding of the 16 children and the encoding of
the payload,

Extension Node: the hash or encoding of the child and the encoding of the
payload.

For the rest of the nodes we have:
Empty Node: the encoding of an empty node is 0x80,

Digest Node: the encoding of a digest node stored as (MPT_HASH NODE, d) is
d.

The payloads in turn are RLP encoded as follows

State Trie: Encoded as a list containing nonce, balance, storage trie hash

and code hash.

Storage Trie: The RLP encoding of the value (thus the double RLP encod-
ing)
Transaction Trie: The RLP encoded transaction.

29

Receipt Trie: Depending on the transaction type it’s encoded as RLP(RLP(receipt))
for Legacy transactions or RLP(txn_type||RLP(receipt)) for transac-
tions of type 1 or 2. Each receipt is encoded as a list containing:

the status,

the cumulative gas used,

the bloom filter, stored as a list of length 256.
the list of topics

AR

the data string.

Once a node is encoded is written on the Segment: :R1pRaw segment as a
sequence of bytes. Then the RLP encoded data is hashed if the length of the
data is more than 32 bytes. Otherwise we return the encoding. Further details
can be found in the mpt hash folder.

5 CPU logic

The CPU is in charge of coordinating the different STARKS, proving the cor-

rect execution of the instructions it reads and guaranteeing that the final state

of the EVM corresponds to the starting state after executing the input trans-

action. All design choices were made to make sure these properties can be

adequately translated into constraints of degree at most 3 while minimizing

the size of the different table traces (number of columns and number of rows).
In this section, we will detail some of these choices.

5.1 Kernel

The kernel is in charge of the proving logic. This section aims at providing
a high level overview of this logic. For details about any specific part of the
logic, one can consult the various “asm” files in the “kernel” folder.

We prove one transaction at a time. These proofs can later be aggregated
recursively to prove a block. Proof aggregation is however not in the scope of
this section. Here, we assume that we have an initial state of the EVM, and
we wish to prove that a single transaction was correctly executed, leading to
a correct update of the state.

Since we process one transaction at a time, a few intermediary values need
to be provided by the prover. Indeed, to prove that the registers in the EVM
state are correctly updated, we need to have access to their initial values.
When aggregating proofs, we can also constrain those values to match from

30

https://github.com/0xPolygonZero/plonky2/tree/main/evm/src/cpu/mpt/hash
https://github.com/0xPolygonZero/plonky2/tree/main/evm/src/cpu/kernel

one transaction to the next. Let us consider the example of the transaction
number. Let n be the number of transactions executed so far in the current
block. If the current proof is not a dummy one (we are indeed executing a
transaction), then the transaction number should be updated: n := n + 1.
Otherwise, the number remains unchanged. We can easily constrain this up-
date. When aggregating the previous transaction proof (lhs) with the current
one (rhs), we also need to check that the output transaction number of lhs is
the same as the input transaction number of rhs.

Those prover provided values are stored in memory prior to entering the
kernel, and are used in the kernel to assert correct updates. The list of prover
provided values necessary to the kernel is the following:

1. the previous transaction number: ¢,

2. the gas used before executing the current transaction: g_uy,

3. the gas used after executing the current transaction: g_u;,

4. the block bloom filter before executing the current transaction: b_fy
5. the block bloom filter after executing the current transaction: b_f7,

6. the state, transaction and receipts MPTs before executing the current
transaction: triesy,

7. the hash of all MPTs before executing the current transaction: digests,,
8. the hash of all MPTs after executing the current transaction: digests,,

9. the RLP encoding of the transaction.

Initialization: The first step consists in initializing:

e The shift table: it maps the number of bit shifts s with its shifted value
1 << s. Note that 0 < s < 255.

e The block bloom filter: the current block bloom filter is initialized with
b_fo.

e The initial MPTs: the initial state, transaction and receipt tries triesg
are loaded from memory and hashed. The hashes are then compared to
digests_0.

31

e We load the transaction number £_n and the current gas used g_ug from
memory.

If no transaction is provided, we can halt after this initialization. Other-
wise, we start processing the transaction. The transaction is provided as its
RLP encoding. We can deduce the various transaction fields (such as its type
or the transfer value) from its encoding. Based on this, the kernel updates
the state trie by executing the transaction. Processing the transaction also
includes updating the transactions MPT with the transaction at hand.

The processing of the transaction returns a boolean “success” that indicates
whether the transaction was executed successfully, along with the leftover gas.

The following step is then to update the receipts MPT. Here, we update
the transaction’s bloom filter and the block bloom filter. We store “success”,
the leftover gas, the transaction bloom filter and the logs in memory. We also
store some additional information that facilitates the RLP encoding of the
receipts later.

If there are any withdrawals, they are performed at this stage.

Finally, once the three MPTs have been updated, we need to carry out
final checks:

e the gas used after the execution is equal to g_uq,

e the new transaction number is n + 1 if there was a transaction,
e the updated block bloom filter is equal to b_fi,

e the three MPTs are hashed and checked against digests;.

Once those final checks are performed, the program halts.

MPT hashing: MPTs are a complex structure in the kernel, and we will
not delve into all of its aspects. Here, we only explain how the hashing works,
since it is part of the initialization and final checks. The data required for the
MPTs are stored in the “TrieData” segment in memory. Whenever we need
to hash an MPT, we recover the information from the “TrieData” segment
and write it in the correct format in the “RlpRaw” segment. We start by
getting the node type. If the node is a hash node, we simply return its value.
Otherwise, we RLP encode the node recursively:

e If it is an empty node, the encoding is 0x80.

32

e If it is a branch node, we encode the node’s value and append it to
the RLP tape. Then, we encode each of the children and append the
encodings to the RLP tape.

e If it is an extension node, we RLP encode its child and hex prefix it.

e If it is a leaf, we RLP encode it depending on the type of trie, and
hex prefix the encoding. Note that for a receipt leaf, the encoding is
RLP(type|[RLP(receipt)). In the case of a transaction, their RLP
encoding is already provided by the input, so we simply load it from
memory.

Finally, we hash the output of the RLP encoding, stored in “RlpRaw” — unless
it is already a hash.

5.2 Simple opcodes VS Syscalls

For simplicity and efficiency, EVM opcodes are categorized into two groups:
“simple opcodes” and “syscalls”. Simple opcodes are generated directly in
Rust, in operation.rs. Every call to a simple opcode adds exactly one row
to the cpu table. Syscalls are more complex structures written with simple
opcodes, in the kernel.

Whenever we encounter a syscall, we switch to kernel mode and execute
its associated code. At the end of each syscall, we run EXIT _KERNEL, which
resets the kernel mode to its state right before the syscall. It also sets the PC
to point to the opcode right after the syscall.

Exceptions are handled differently for simple opcodes and syscalls. When
necessary, simple opcodes throw an exception (see 5.6). This activates the
“exception flag” in the CPU and runs the exception operations. On the other
hand, syscalls handle exceptions in the kernel directly.

5.3 Privileged instructions

To ease and speed-up proving time, the zkEVM supports custom, privileged
instructions that can only be executed by the kernel. Any appearance of those
privileged instructions in a contract bytecode for instance would result in an
unprovable state.

In what follows, we denote by ppy the characteristic of the BN254 curve
base field, curve for which Ethereum supports the ecAdd, ecMul and ecPairing
precompiles.

33

https://github.com/0xPolygonZero/plonky2/blob/main/evm/src/witness/operation.rs
https://github.com/0xPolygonZero/plonky2/blob/main/evm/spec/tables/cpu.tex

0x0C. ADDFP254. Pops 2 elements from the stack interpreted as BN254 base
field elements, and pushes their addition modulo pgy onto the stack.

0x0D. MULFP254. Pops 2 elements from the stack interpreted as BN254 base
field elements, and pushes their product modulo pgy onto the stack.

0xOE. SUBFP254. Pops 2 elements from the stack interpreted as BN254 base
field elements, and pushes their difference modulo pgy onto the stack.
This instruction behaves similarly to the SUB (0x03) opcode, in that we
subtract the second element of the stack from the initial (top) one.

0xOF. SUBMOD. Pops 3 elements from the stack, and pushes the modular differ-
ence of the first two elements of the stack by the third one. It is similar
to the SUB instruction, with an extra pop for the custom modulus.

0x21. KECCAK GENERAL. Pops 4 elements (successively the context, segment,
and offset portions of a Memory address, followed by a length ¢) and
pushes the hash of the memory portion starting at the constructed ad-
dress and of length ¢. It is similar to KECCAK256 (0x20) instruction,
but can be applied to any memory section (i.e. even privileged ones).

0x49. PROVER_INPUT. Pushes a single prover input onto the stack.

0xCO0-0xDF. MSTORE_32BYTES. Pops 4 elements from the stack (successively
the context, segment, and offset portions of a Memory address, and
then a value), and pushes a new offset’ onto the stack. The value is
being decomposed into bytes and written to memory, starting from the
reconstructed address. The new offset being pushed is computed as the
initial address offset + the length of the byte sequence being written to
memory. Note that similarly to PUSH (0x60-0x7F) instructions there are
31 MSTORE_32BYTES instructions, each corresponding to a target byte
length (length 0 is ignored, for the same reasons as MLOAD_32BYTES,
see below). Writing to memory an integer fitting in n bytes with a
length ¢ < n will result in the integer being truncated. On the other
hand, specifying a length ¢ greater than the byte size of the value being
written will result in padding with zeroes. This process is heavily used
when resetting memory sections (by calling MSTORE_32BYTES_32 with
the value 0).

0xF'6. GET_CONTEXT. Pushes the current context onto the stack. The kernel
always has context 0.

34

OxF7. SET_CONTEXT. Pops the top element of the stack and updates the current
context to this value. It is usually used when calling another contract or
precompile, to distinguish the caller from the callee.

0xF8. MLOAD_32BYTES. Pops 4 elements from the stack (successively the con-
text, segment, and offset portions of a Memory address, and then a length
?), and pushes a value onto the stack. The pushed value corresponds to
the U256 integer read from the big-endian sequence of length ¢ from the
memory address being reconstructed. Note that an empty length is not
valid, nor is a length greater than 32 (as a U256 consists in at most 32
bytes). Missing these conditions will result in an unverifiable proof.

0xF9. EXIT KERNEL. Pops 1 element from the stack. This instruction is used
at the end of a syscall, before proceeding to the rest of the execution
logic. The popped element, kezit_info, contains several informations like
the current program counter, current gas used, and if we are in kernel
(i.e. privileged) mode.

0xFB. MLOAD_GENERAL. Pops 3 elements (successively the context, segment,
and offset portions of a Memory address), and pushes the value stored
at this memory address onto the stack. It can read any memory location,
general (similarly to MLOAD (0x51) instruction) or privileged.

0xFC. MSTORE_GENERAL. Pops 4 elements (successively a value, then the con-
text, segment, and offset portions of a Memory address), and writes
the popped value from the stack at the reconstructed address. It can
write to any memory location, general (similarly to MSTORE (0x52) /
MSTORES (0x53) instructions) or privileged.

5.4 Stack handling
5.4.1 Top of the stack

The majority of memory operations involve the stack. The stack is a segment in
memory, and stack operations (popping or pushing) use the memory channels.
Every CPU instruction performs between 0 and 4 pops, and may push at most
once. However, for efficiency purposes, we hold the top of the stack in the first
memory channel current row.mem channels[0], only writing it in memory
if necessary.

Motivation: See this issue.

35

https://github.com/0xPolygonZero/plonky2/issues/1149

Top reading and writing: When a CPU instruction modifies the stack, it
must update the top of the stack accordingly. There are three cases.

e The instruction pops and pushes: The new top of the stack is stored
in next _row.mem _channels[0]; it may be computed by the instruction,
or it could be read from memory. In either case, the instruction is respon-
sible for setting next_row.mem_channels[0]’s flags and address columns
correctly. After use, the previous top of the stack is discarded and doesn’t
need to be written in memory.

e The instruction pushes, but doesn’t pop: The new top of the stack
is stored in next_row.mem channels[0]; it may be computed by the in-
struction, or it could be read from memory. In either case, the instruction
is responsible for setting next_row.mem_channels[0]’s flags and address
columns correctly. If the stack wasn’t empty (current_row.stack len
> 0), the instruction performs a memory read in current_row.partial_
channel. current row.partial channel shares its values with current_
row.mem channels[0] (which holds the current top of the stack). If the
stack was empty, current _row.partial _channel is disabled.

e The instruction pops, but doesn’t push: After use, the current top
of the stack is discarded and doesn’t need to be written in memory.
If the stack isn’t empty now (current row.stack len > num pops),
the new top of the stack is set in next_row.mem_channels[0] with
a memory read from the stack segment. If the stack is now empty,
next _row.mem channels[0] is disabled.

In the last two cases, there is an edge case if current row.stack len is
equal to a special len. For a strictly pushing instruction, this happens if the
stack is empty, and special_len = 0. For a strictly popping instruction, this
happens if the next stack is empty, i.e. if all remaining elements are popped,
and special len = num pops. Note that we do not need to check for values
below num pops, since this would be a stack underflow exception which is
handled separately. The edge case is detected with the compound flag

1 - not_special_len * stack_inv_aux,

where
not_special_len = current_row - special_len

and stack_inv_aux is constrained to be the modular inverse of not_special_
len if it’s non-zero, or 0 otherwise. The flag is 1 if stack len is equal to
special_len, and 0 otherwise.

36

This logic can be found in code in the eval_packed_one function of stack.rs.
The function multiplies all of the stack constraints with the degree 1 filter
associated with the current instruction.

Operation flag merging: To reduce the total number of columns, many
operation flags are merged together (e.g. DUP and SWAP) and are distinguished
with the binary decomposition of their opcodes. The filter for a merged opera-
tion is now of degree 2: for example, is_swap = dup_swap * opcode_bits[4]
since the 4th bit is set to 1 for a SWAP and 0 for a DUP. If the two instructions
have different stack behaviors, this can be a problem: eval_packed_one’s con-
straints are already of degree 3 and it can’t support degree 2 filters.

When this happens, stack constraints are defined manually in the opera-
tion’s dedicated file (e.g. dup_swap.rs). Implementation details vary case-by-
case and can be found in the files.

5.4.2 Stack length checking

The CPU must make sure that the stack length never goes below zero and, in
user mode, never grows beyond the maximum stack size. When this happens,
an honest prover should trigger the corresponding exception. If a malicious
prover doesn’t trigger the exception, constraints must fail the proof.

Stack underflow: There is no explicit constraint checking for stack under-
flow. An underflow happens when the CPU tries to pop the empty stack,
which would perform a memory read at virtual address -1. Such a read can-
not succeed: in Memory, the range-check argument requires the gap between
two consecutive addresses to be lower than the length of the Memory trace.
Since the prime of the Plonky?2 field is 64-bit long, this would require a Memory
trace longer than 232

Stack overflow: An instruction can only push at most once, meaning that
an overflow occurs whenever the stack length is exactly one more than the
maximum stack size (1024 + 1) in user mode. To constrain this, the column
stack_len bounds_aux contains:

— the modular inverse of stack_len - 1025 if we're in user mode and
stack len # 1025,

— 0 if stack_len = 1025 or if we're in kernel mode.

37

https://github.com/0xPolygonZero/plonky2/blob/main/evm/src/cpu/stack.rs

Then overflow can be checked with the flag
(1 - is_kernel mode) - stack_len * stack_len bounds_ aux.

The flag is 1 if stack_len = 1025 and we’re in user mode, and 0 otherwise.

5.5 Gas handling

5.5.1 Out of gas errors

The CPU table has a “gas” register that keeps track of the gas used by the
transaction so far.

The crucial invariant in our out-of-gas checking method is that at any point
in the program’s execution, we have not used more gas than we have available;
that is “gas” is at most the gas allocation for the transaction (which is stored
separately by the kernel). We assume that the gas allocation will never be 232
or more, so if “gas” does not fit in one limb, then we’ve run out of gas.

When a native instruction (one that is not a syscall) is executed, a con-
straint ensures that the “gas” register is increased by the correct amount.
This is not automatic for syscalls; the syscall handler itself must calculate and
charge the appropriate amount.

If everything goes smoothly and we have not run out of gas, “gas” should
be no more than the gas allowance at the point that we STOP, REVERT,
stack overflow, or whatever. Indeed, because we assume that the gas overflow
handler is invoked as soon as we've run out of gas, all these termination
methods verify that gas < allowance, and jump to exc_out_of gas if this is
not the case. This is also true for the out-of-gas handler, which checks that:

1. we have not yet run out of gas

2. we are about to run out of gas

and “PANIC” if either of those statements does not hold.

When we do run out of gas, however, this event must be handled. Syscalls
are responsible for checking that their execution would not cause the transac-
tion to run out of gas. If the syscall detects that it would need to charge more
gas than available, it aborts the transaction (or the current code) by jumping
to fault_exception. In fact, fault_exception is in charge of handling all
exceptional halts in the kernel.

Native instructions do this differently. If the prover notices that execution
of the instruction would cause an out-of-gas error, it must jump to the ap-
propriate handler instead of executing the instruction. (The handler contains
special code that PANICs if the prover invoked it incorrectly.)

38

5.5.2 Overflow

We must be careful to ensure that “gas” does not overflow to prevent denial
of service attacks.

Note that a syscall cannot be the instruction that causes an overflow. This
is because every syscall is required to verify that its execution does not cause
us to exceed the gas limit. Upon entry into a syscall, a constraint verifies that
gas < 232, Some syscalls may have to be careful to ensure that the gas check is
performed correctly (for example, that overflow modulo 22°6 does not occur).
So we can assume that upon entry and exit out of a syscall, gas < 2%2.

Similarly, native instructions alone cannot cause wraparound. The most
expensive instruction, JUMPI, costs 10 gas. Even if we were to execute 232 con-
secutive JUMPI instructions, the maximum length of a trace, we are nowhere
close to consuming 24 — 232 41 (= Goldilocks prime) gas.

The final scenario we must tackle is an expensive syscall followed by many
expensive native instructions. Upon exit from a syscall, gas < 232. Again,
even if that syscall is followed by 232 native instructions of cost 10, we do not
see wraparound modulo Goldilocks.

5.6 Exceptions

Sometimes, when executing user code (i.e. contract or transaction code), the
EVM halts exceptionally (i.e. outside of a STOP, a RETURN or a REVERT).
When this happens, the CPU table invokes a special instruction with a ded-
icated operation flag exception. Exceptions can only happen in user mode;
triggering an exception in kernel mode would make the proof unverifiable. No
matter the exception, the handling is the same:

— The opcode which would trigger the exception is not executed. The
operation flag set is exception instead of the opcode’s flag.

— We push a value to the stack which contains: the current program counter
(to retrieve the faulty opcode), and the current value of gas_used. The pro-
gram counter is then set to the corresponding exception handler in the kernel
(e.g. exc_out_of gas).

— The exception handler verifies that the given exception would indeed be
triggered by the faulty opcode. If this is not the case (if the exception has
already happened or if it doesn’t happen after executing the faulty opcode),
then the kernel panics: there was an issue during witness generation.

— The kernel consumes the remaining gas and returns from the current
context with success set to 0 to indicate an execution failure.

Here is the list of the possible exceptions:

39

Out of gas: Raised when a native instruction (i.e. not a syscall) in user mode
pushes the amount of gas used over the current gas limit. When this
happens, the EVM jumps to exc_out_of_gas. The kernel then checks
that the consumed gas is currently below the gas limit, and that adding
the gas cost of the faulty instruction pushes it over it. If the exception
is not raised, the prover will panic when returning from the execution:
the remaining gas is checked to be positive after STOP, RETURN or
REVERT.

Invalid opcode: Raised when the read opcode is invalid. It means either that
it doesn’t exist, or that it’s a privileged instruction and thus not available
in user mode. When this happens, the EVM jumps to exc_invalid opcode.
The kernel then checks that the given opcode is indeed invalid. If the
exception is not raised, decoding constraints ensure no operation flag is
set to 1, which would make it a padding row. Halting constraints would
then make the proof unverifiable.

Stack underflow: Raised when an instruction which pops from the stack is
called when the stack doesn’t have enough elements. When this happens,
the EVM jumps to exc_stack overflow. The kernel then checks that
the current stack length is smaller than the minimum stack length re-
quired by the faulty opcode. If the exception is not raised, the popping
memory operation’s address offset would underflow, and the Memory
range check would require the Memory trace to be too large (> 2%2).

Invalid JUMP destination: Raised when the program counter jumps to an
invalid location (i.e. not a JUMPDEST). When this happens, the EVM
jumps to exc_invalid_jump destination. The kernel then checks that
the opcode is a JUMP, and that the destination is not a JUMPDEST
by checking the JUMPDEST segment. If the exception is not raised,
jumping constraints will fail the proof.

Invalid JUMPI destination: Same as the above, for JUMPI.

Stack overflow: Raised when a pushing instruction in user mode pushes the
stack over 1024. When this happens, the EVM jumps to exc_stack overflow.
The kernel then checks that the current stack length is exactly equal to
1024 (since an instruction can only push once at most), and that the
faulty instruction is pushing. If the exception is not raised, stack con-
straints ensure that a stack length of 1025 in user mode will fail the
proof.

40

References

[1] E. Ben-Sasson, 1. Bentov, Y. Horesh, and M. Riabzev, “Scalable, transpar-
ent, and post-quantum secure computational integrity.” Cryptology ePrint
Archive, Report 2018/046, 2018. https://ia.cr/2018/046.

2] G. Wood et al., “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp. 1-32, 2014.

41

https://ia.cr/2018/046

	Introduction
	STARK framework
	Cost model
	Field selection
	Cross-table lookups
	Range-checks
	What to range-check?
	Lookup Argument
	Constraints

	Tables
	CPU
	CPU flow
	CPU columns

	Arithmetic
	Auxiliary columns

	Byte Packing
	Logic
	Memory
	Virtual memory
	Timestamps

	Keccak-f
	Keccak-f Permutation
	Columns
	Constraints

	KeccakSponge

	Merkle Patricia Tries
	Internal memory format
	State trie
	Transaction Trie
	Receipt Trie

	Prover input format
	Encoding and Hashing

	CPU logic
	Kernel
	Simple opcodes VS Syscalls
	Privileged instructions
	Stack handling
	Top of the stack
	Stack length checking

	Gas handling
	Out of gas errors
	Overflow

	Exceptions

