Lots of little bugs!
- The Keccak sponge table's padding logic was wrong, it was mixing up the number of rows with the number of hashes.
- The Keccak sponge table's Keccak-looking data was wrong - input to Keccak-f should be after xor'ing in the block.
- The Keccak sponge table's logic-looking filter was wrong. We do 5 logic CTLs for any final-block row, even if some of the xors are with 0s from Keccak padding.
- The CPU was using the wrong/outdated output memory channel for its Keccak sponge and logic CTLs.
- The Keccak table just didn't have a way to filter out padding rows. I added a filter column for this.
- The Keccak table wasn't remembering the original preimage of a permutation; lookers were seeing the preimage of the final step. I added columns for the original preimage.
- `ctl_data_logic` was using the wrong memory channel
- Kernel bootloading generation was using the wrong length for its Keccak sponge CTL, and its `keccak_sponge_log` was seeing the wrong clock since it was called after adding the final bootloading row.
In preparation for adding the zkEVM aggregation circuit. Mainly,
- Adds a `WitnessWrite` trait, a sub-trait of `Witness`, and move the write methods to it. `GeneratedValues` impls `WitnessWrite`, which lets generators like `DummyProofGenerator` access all our write methods like `set_proof_with_pis_target`. Also removes some duplication.
- Remove `set_cyclic_recursion_data_target` - now that dummy proof data is automatically populated, all that remains is populating `condition` and the cyclic proof + VK. I think it's easy enough for callers to do this; the steps are the same as with `conditionally_verify_proof`. This way there's no cyclic-recursion-specific API to learn about.
- Split `cyclic_recursion` into two variants, one which checks the current circuit or a dummy, and a more general one which checks the current circuit or some other circuit. We can use the latter to build a more efficient aggregation circuit, where we check another aggregation proof or an EVM proof, with no dummy proofs involved.