Clean low-degree interpolation gate

This commit is contained in:
wborgeaud 2021-11-22 17:54:58 +01:00
parent 5ea632f2a8
commit fa29db1dcb

View File

@ -26,38 +26,6 @@ pub(crate) struct LowDegreeInterpolationGate<F: RichField + Extendable<D>, const
_phantom: PhantomData<F>,
}
impl<F: RichField + Extendable<D>, const D: usize> LowDegreeInterpolationGate<F, D> {
pub fn powers_init(&self, i: usize) -> usize {
debug_assert!(0 < i && i < self.num_points());
if i == 1 {
return self.wire_shift();
}
self.end_coeffs() + i - 2
}
pub fn powers_eval(&self, i: usize) -> Range<usize> {
debug_assert!(0 < i && i < self.num_points());
if i == 1 {
return self.wires_evaluation_point();
}
let start = self.end_coeffs() + self.num_points() - 2 + (i - 2) * D;
start..start + D
}
/// End of wire indices, exclusive.
fn end(&self) -> usize {
self.powers_eval(self.num_points() - 1).end
}
/// The domain of the points we're interpolating.
fn coset(&self, shift: F) -> impl Iterator<Item = F> {
let g = F::primitive_root_of_unity(self.subgroup_bits);
let size = 1 << self.subgroup_bits;
// Speed matters here, so we avoid `cyclic_subgroup_coset_known_order` which allocates.
g.powers().take(size).map(move |x| x * shift)
}
}
impl<F: RichField + Extendable<D>, const D: usize> InterpolationGate<F, D>
for LowDegreeInterpolationGate<F, D>
{
@ -130,6 +98,40 @@ impl<F: RichField + Extendable<D>, const D: usize> InterpolationGate<F, D>
}
}
impl<F: RichField + Extendable<D>, const D: usize> LowDegreeInterpolationGate<F, D> {
/// `powers_shift(i)` is the wire index of `wire_shift^i`.
pub fn powers_shift(&self, i: usize) -> usize {
debug_assert!(0 < i && i < self.num_points());
if i == 1 {
return self.wire_shift();
}
self.end_coeffs() + i - 2
}
/// `powers_evalutation_point(i)` is the wire index of `evalutation_point^i`.
pub fn powers_evaluation_point(&self, i: usize) -> Range<usize> {
debug_assert!(0 < i && i < self.num_points());
if i == 1 {
return self.wires_evaluation_point();
}
let start = self.end_coeffs() + self.num_points() - 2 + (i - 2) * D;
start..start + D
}
/// End of wire indices, exclusive.
fn end(&self) -> usize {
self.powers_evaluation_point(self.num_points() - 1).end
}
/// The domain of the points we're interpolating.
fn coset(&self, shift: F) -> impl Iterator<Item = F> {
let g = F::primitive_root_of_unity(self.subgroup_bits);
let size = 1 << self.subgroup_bits;
// Speed matters here, so we avoid `cyclic_subgroup_coset_known_order` which allocates.
g.powers().take(size).map(move |x| x * shift)
}
}
impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for LowDegreeInterpolationGate<F, D> {
fn id(&self) -> String {
format!("{:?}<D={}>", self, D)
@ -142,33 +144,35 @@ impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for LowDegreeInter
.map(|i| vars.get_local_ext_algebra(self.wires_coeff(i)))
.collect::<Vec<_>>();
let mut powers_init = (1..self.num_points())
.map(|i| vars.local_wires[self.powers_init(i)])
let mut powers_shift = (1..self.num_points())
.map(|i| vars.local_wires[self.powers_shift(i)])
.collect::<Vec<_>>();
powers_init.insert(0, F::Extension::ONE);
let wire_shift = powers_init[1];
for i in 2..self.num_points() {
constraints.push(powers_init[i - 1] * wire_shift - powers_init[i]);
let shift = powers_shift[0];
for i in 1..self.num_points() - 1 {
constraints.push(powers_shift[i - 1] * shift - powers_shift[i]);
}
let ocoeffs = coeffs
powers_shift.insert(0, F::Extension::ONE);
// `altered_coeffs[i] = c_i * shift^i`, where `c_i` is the original coefficient.
// Then, `altered(w^i) = original(shift*w^i)`.
let altered_coeffs = coeffs
.iter()
.zip(powers_init)
.zip(powers_shift)
.map(|(&c, p)| c.scalar_mul(p))
.collect::<Vec<_>>();
let interpolant = PolynomialCoeffsAlgebra::new(coeffs);
let ointerpolant = PolynomialCoeffsAlgebra::new(ocoeffs);
let altered_interpolant = PolynomialCoeffsAlgebra::new(altered_coeffs);
for (i, point) in F::Extension::two_adic_subgroup(self.subgroup_bits)
.into_iter()
.enumerate()
{
let value = vars.get_local_ext_algebra(self.wires_value(i));
let computed_value = ointerpolant.eval_base(point);
let computed_value = altered_interpolant.eval_base(point);
constraints.extend(&(value - computed_value).to_basefield_array());
}
let evaluation_point_powers = (1..self.num_points())
.map(|i| vars.get_local_ext_algebra(self.powers_eval(i)))
.map(|i| vars.get_local_ext_algebra(self.powers_evaluation_point(i)))
.collect::<Vec<_>>();
let evaluation_point = evaluation_point_powers[0];
for i in 1..self.num_points() - 1 {
@ -190,33 +194,36 @@ impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for LowDegreeInter
let coeffs = (0..self.num_points())
.map(|i| vars.get_local_ext(self.wires_coeff(i)))
.collect::<Vec<_>>();
let mut powers_init = (1..self.num_points())
.map(|i| vars.local_wires[self.powers_init(i)])
let mut powers_shift = (1..self.num_points())
.map(|i| vars.local_wires[self.powers_shift(i)])
.collect::<Vec<_>>();
powers_init.insert(0, F::ONE);
let wire_shift = powers_init[1];
for i in 2..self.num_points() {
constraints.push(powers_init[i - 1] * wire_shift - powers_init[i]);
let shift = powers_shift[0];
for i in 1..self.num_points() - 1 {
constraints.push(powers_shift[i - 1] * shift - powers_shift[i]);
}
let ocoeffs = coeffs
powers_shift.insert(0, F::ONE);
// `altered_coeffs[i] = c_i * shift^i`, where `c_i` is the original coefficient.
// Then, `altered(w^i) = original(shift*w^i)`.
let altered_coeffs = coeffs
.iter()
.zip(powers_init)
.zip(powers_shift)
.map(|(&c, p)| c.scalar_mul(p))
.collect::<Vec<_>>();
let interpolant = PolynomialCoeffs::new(coeffs);
let ointerpolant = PolynomialCoeffs::new(ocoeffs);
let altered_interpolant = PolynomialCoeffs::new(altered_coeffs);
for (i, point) in F::two_adic_subgroup(self.subgroup_bits)
.into_iter()
.enumerate()
{
let value = vars.get_local_ext(self.wires_value(i));
let computed_value = ointerpolant.eval_base(point);
let computed_value = altered_interpolant.eval_base(point);
constraints.extend(&(value - computed_value).to_basefield_array());
}
let evaluation_point_powers = (1..self.num_points())
.map(|i| vars.get_local_ext(self.powers_eval(i)))
.map(|i| vars.get_local_ext(self.powers_evaluation_point(i)))
.collect::<Vec<_>>();
let evaluation_point = evaluation_point_powers[0];
for i in 1..self.num_points() - 1 {
@ -242,25 +249,28 @@ impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for LowDegreeInter
let coeffs = (0..self.num_points())
.map(|i| vars.get_local_ext_algebra(self.wires_coeff(i)))
.collect::<Vec<_>>();
let mut powers_init = (1..self.num_points())
.map(|i| vars.local_wires[self.powers_init(i)])
let mut powers_shift = (1..self.num_points())
.map(|i| vars.local_wires[self.powers_shift(i)])
.collect::<Vec<_>>();
powers_init.insert(0, builder.one_extension());
let wire_shift = powers_init[1];
for i in 2..self.num_points() {
let shift = powers_shift[0];
for i in 1..self.num_points() - 1 {
constraints.push(builder.mul_sub_extension(
powers_init[i - 1],
wire_shift,
powers_init[i],
powers_shift[i - 1],
shift,
powers_shift[i],
));
}
let ocoeffs = coeffs
powers_shift.insert(0, builder.one_extension());
// `altered_coeffs[i] = c_i * shift^i`, where `c_i` is the original coefficient.
// Then, `altered(w^i) = original(shift*w^i)`.
let altered_coeffs = coeffs
.iter()
.zip(powers_init)
.zip(powers_shift)
.map(|(&c, p)| builder.scalar_mul_ext_algebra(p, c))
.collect::<Vec<_>>();
let interpolant = PolynomialCoeffsExtAlgebraTarget(coeffs);
let ointerpolant = PolynomialCoeffsExtAlgebraTarget(ocoeffs);
let altered_interpolant = PolynomialCoeffsExtAlgebraTarget(altered_coeffs);
for (i, point) in F::Extension::two_adic_subgroup(self.subgroup_bits)
.into_iter()
@ -268,7 +278,7 @@ impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for LowDegreeInter
{
let value = vars.get_local_ext_algebra(self.wires_value(i));
let point = builder.constant_extension(point);
let computed_value = ointerpolant.eval_scalar(builder, point);
let computed_value = altered_interpolant.eval_scalar(builder, point);
constraints.extend(
&builder
.sub_ext_algebra(value, computed_value)
@ -277,7 +287,7 @@ impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for LowDegreeInter
}
let evaluation_point_powers = (1..self.num_points())
.map(|i| vars.get_local_ext_algebra(self.powers_eval(i)))
.map(|i| vars.get_local_ext_algebra(self.powers_evaluation_point(i)))
.collect::<Vec<_>>();
let evaluation_point = evaluation_point_powers[0];
for i in 1..self.num_points() - 1 {
@ -328,8 +338,6 @@ impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for LowDegreeInter
}
fn degree(&self) -> usize {
// The highest power of x is `num_points - 1`, and then multiplication by the coefficient
// adds 1.
2
}
@ -395,7 +403,7 @@ impl<F: RichField + Extendable<D>, const D: usize> SimpleGenerator<F>
.enumerate()
.skip(2)
{
out_buffer.set_wire(local_wire(self.gate.powers_init(i)), power);
out_buffer.set_wire(local_wire(self.gate.powers_shift(i)), power);
}
// Compute the interpolant.
@ -413,10 +421,15 @@ impl<F: RichField + Extendable<D>, const D: usize> SimpleGenerator<F>
}
let evaluation_point = get_local_ext(self.gate.wires_evaluation_point());
for i in 2..self.gate.num_points() {
for (i, power) in evaluation_point
.powers()
.take(self.gate.num_points())
.enumerate()
.skip(2)
{
out_buffer.set_extension_target(
ExtensionTarget::from_range(self.gate_index, self.gate.powers_eval(i)),
evaluation_point.exp_u64(i as u64),
ExtensionTarget::from_range(self.gate_index, self.gate.powers_evaluation_point(i)),
power,
);
}
let evaluation_value = interpolant.eval(evaluation_point);